Tracking in SAND

V. Pia for the SAND Physics/Software WG DUNE Italia Collaboration Meeting – Ferrara October 29, 2024

Outline

- Latest results with KF
- Current status of the reconstruction algorithms
- What's next

Trajectory parametrization

• Trajectory state vector (a_k)

• Measurement vector (m_k)

 $m_x = \begin{pmatrix} x \\ \theta_{xz} \end{pmatrix}$ Angle in the horizontal plane wrt z-axis

$$m_y = \begin{pmatrix} y \\ \theta_{yz} \end{pmatrix}$$
 Angle in the vertical plane wrt z-axis

• KF propagation from downstream to upstream

Recap of last year presentation

16

- Kalman filter tested with ideal circular trajectories:
 - No energy loss
 - No MCS
 - No track finding
- No convergence of the algorithm

The reconstructed trajectory diverge even for small smearing of the initial state, suggesting the existence of a wrong implementation of the code.

۲ س]

-3

Past year KF activities

- Fixed algorithm implementation
- Added energy loss
- Added MCS
- Added simulated trajectories as input
- Performed statistical tests to validate the algorithm
- Preliminary performance evaluation of the algorithm

<u>Giulia Lupi Thesis</u>

ND Simu/Reco presentation

KF Standard consistency checks

Test applied to the KF algorithm to verify its consistency:

$$g(i)_k = \frac{r(i)_k}{\sqrt{C(i)_k}}$$

 $r_k = m_k^{pred} - m_k^{true}$

 $r_k^i = i$ -th element of the innovation at step k

 C_k^i = corresponding element of the measurement covariance matrix

If the prediction is correct each g^i should be distributed as a **standard** gaussian distribution ($\mu = 0$, $\sigma = 1$)

Track and vertex reconstructions

Preliminary performances of the algorithm evaluated by comparing true and reconstructed values at the most upstream measurement layer and by a preliminary vertex reconstruction

x [mm]		tanλ		ϕ [mrad]		P [%]	
Mean	RMS	Mean	RMS	Mean	RMS	Mean	RMS
< 10 ⁻⁶	0.4	< 10 ⁻⁶	0.006	1.1	3.5	-0.2%	4.9%

	<i>x</i> [m]	<i>y</i> [m]	<i>z</i> [m]	
Mean	10 ⁻⁶	10 ⁻⁴	-0.0017	
RMS	0.0027	0.0019	0.0049	
FWHM	0.0006	0.0006	0.003	

Caveats

- Measurements obtained with a fast digitization
 - True particle info smeared and sampled at defined steps
- One measurement per layer
 - no track finding needed/performed
- Seeding from MC-truth
- PID from MC-truth

29/10/24

8

- Mass and charge of the particle known

Caveats

- Measurements obtained with a fast digitization
 - True particle info smeared and sampled at defined steps
- One measurement per layer
 - no track finding needed/performed
- Seeding from MC-truth
- PID from MC-truth
 - Mass and charge of the particle known

DUNE Collaboration Meeting

Current Tracking Flow Chart

Digitization

• For each energy deposit it provide a TDC and an ADC for each fired wire

Status

• Wire

- Ready for both the STT and the Drift geometries
- Works for any configuration (number of wires,

direction, pitch,...)

Radius (TDC)

Fired tube

Digitization

Clustering

Should group digits in clusters based on some criteria

Status

Cluster

- Multiple clustering criteria available
- **Geometry independent**

Tracklet finder

Minimization with migrad of

$$D = \sum_{i} (d_i - r_i)^2$$

- *d_i* is the distance between the i-th fired wire and the trial track
- r_i is the radius (from t_{drift}^{reco}) of the i-th fired wire

Scan over 4 parameters:

- xz, yz angles, limited in the z+ quadrants
- x,y positions, limited in a region defined by the fired cells

Example

- XYXY wire pattern with particle along the z axis
- t_{drift} computed analytically
- No smearing

Simulated trajectory (x, y, z) = (11, 9.7, 0) cm (ax, ay, az) = (0, 0, 1)

Found minima

x [cm]	y [cm]	ax	ay	az
9	6.78	0	0	1
9	9.7	0	0	1
11	6.78	0	0	1
11	9.7	0	0	1

Example

- 0, -5°, +5°, 0, -5°, +5° wire pattern with particle along the z axis ٠
- t_{drift} computed analytically ۰
- No smearing ٠

Tracklet finder

- **Different starting conditions** (position and direction) are provided to the tracket finder **to avoid** being stuck in a **wrong local minimum**
- All tracklet are saved
- For each tracklet, the two measurements needed by the Kalman filter are extracted

$$m_x = \begin{pmatrix} x \\ \theta_{xz} \end{pmatrix} \quad m_y = \begin{pmatrix} y \\ \theta_{yz} \end{pmatrix}$$

Tracking in SAND

Next steps

- Develop a realistic seeding algorithm
- Validate the KF algorithm with the new software
 - Perform the statistical tests and the particle reconstruction again
- Merge the tracking pipeline in the sand-reco framework to start use it
- Lot of other technical things

Conclusions

- Most of the main steps of the KF algorithm have been implemented
- Statistical test and single-track reconstruction have been performed to validate the KF implementation
 - The code is currently frozen despite some problem are still present
- Complete reconstruction pipeline developed to work for both STT and Drift geometries:
 - Digitization
 - Clustering
 - Tracklet finder

