
ECAL: test of module performance

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma and INFN-Roma, Italy

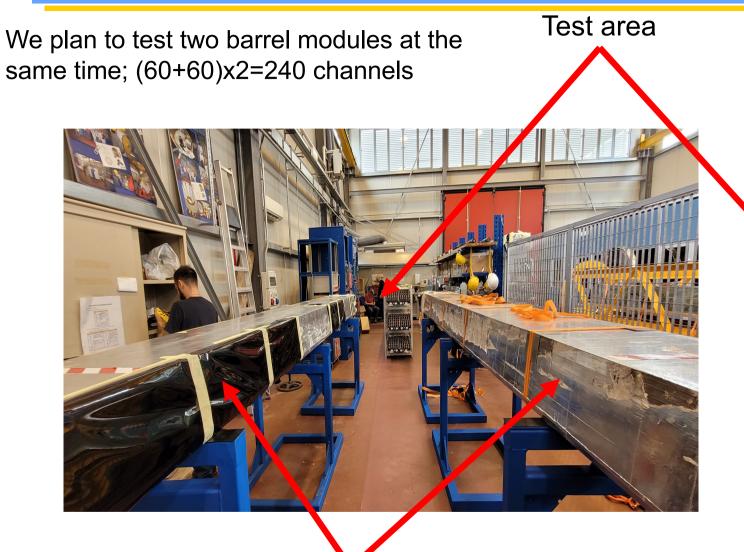
Meeting DUNE-Italia – Ferrara, 28-30 Ottobre 2024

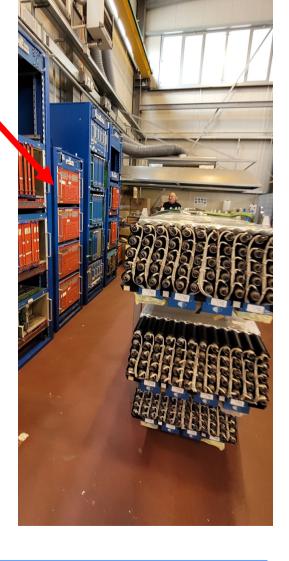
ECAL module consolidation and test

24 Modules are stored each on its own support that will be used also for the transportation An experimental area is being set up for Consolidation and Operational test of the modules

ECAL signal+HV cables 15+15 m long in 12 storage boxes

- Consolidation e Fabrizio's talk Gluing of delaminated parts Replace light-quidee to
- Wrap with new Aluminum-Fiberglass tape


Operational Test


- test basic performance with cosmics rays
- test of new FEE prototypes (comparison with old KLOE electronics)

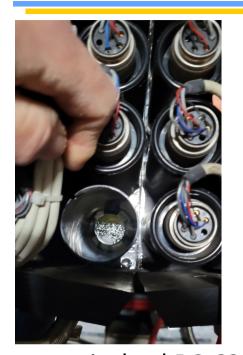
ECAL test at LNF

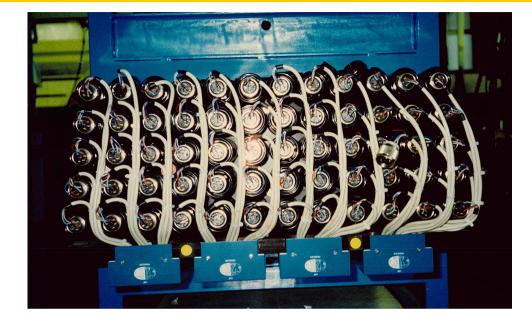
Refurbishment area

(In total test+refurbishment ~85 mq in bld.57)

ECAL test at LNF

PMTs will be dismounted, light guides cleaned, new optical gel applied, and PMT re-mounted.





ECAL module refurbishment and test

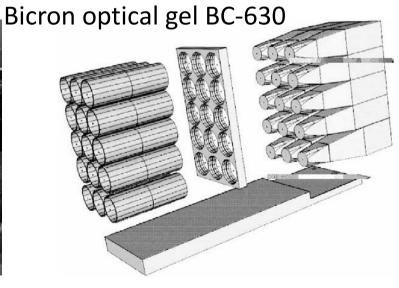


Fig. 4. Exploded view of the PM box.

ECAL test at LNF

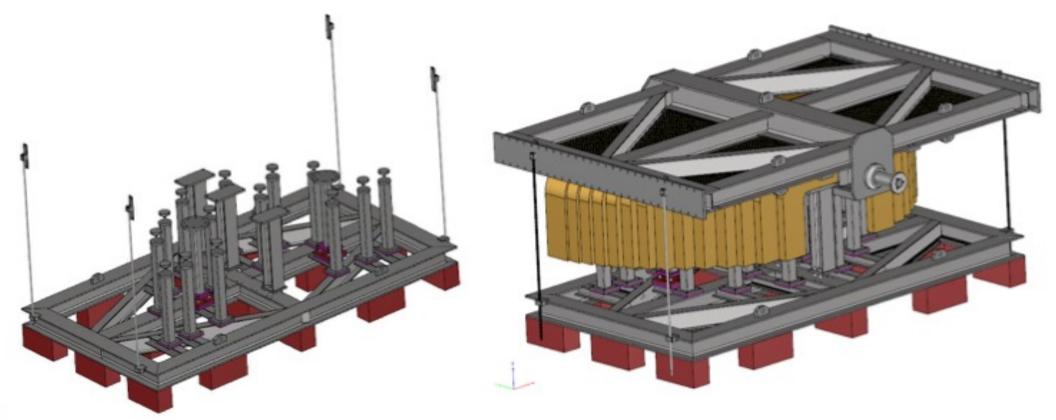
For the ECAL module test the KLOE electronics will be reused

CAEN HV power supply

KLOE Low Voltage power supply (380~V) +/-6V (2x 300W) => PMT preamp, FEE etc. +/- 5.2 (2x 280W) => digital circuitry KLOE ADC CAEN VX559 (30 ch.) 8 boards KLOE TDC CAEN VX569 (30 ch.) 8 boards

KLOE SDS 8 boards: spllitter + discriminators on 30 ch./board common tunable threshold(low+hign thr.)

ECAL: procurement of HV and LV power supply


CAEN

- n° 102 board A7030P (48 ch.) H.V. channels +3 KV 1 mA (1.5 W) Multipin Conn. common floating
- n° 7 Sistem SY4527B Universal Multichannel Power Supply System BASIC 600W
- n° 7 Power supply booster A4533 1200W
- n° 10+2 spare board A25251 8 full floating channels 8V/12A

Mapping of present HV cables 5x12ch on 48 ch. modularity not trivial (to be studied also for LV) => under study to minimize cost (custom connectors or patch panel)

ECAL test at LNF: End-cap modules

Design of supports for handling and transportation of each half End-cap.

- 4-5 DAYS OF FULL DATA TAKING (WHOLE MODULE AND ALL CELLS EXPOSED TO COSMIC RAYS)
 => TRIGGER – SOME OPTIONS
- 1-2 DAYS FOR PMT MOUNTING/DISMOUNTING AND MODULE
 HANDLING
- => 1 WEEK PER BARREL MODULE FOR TEST
- DATA TAKING COULD GO IN PARALLEL FOR TWO MODULES

ECAL test with cosmic rays

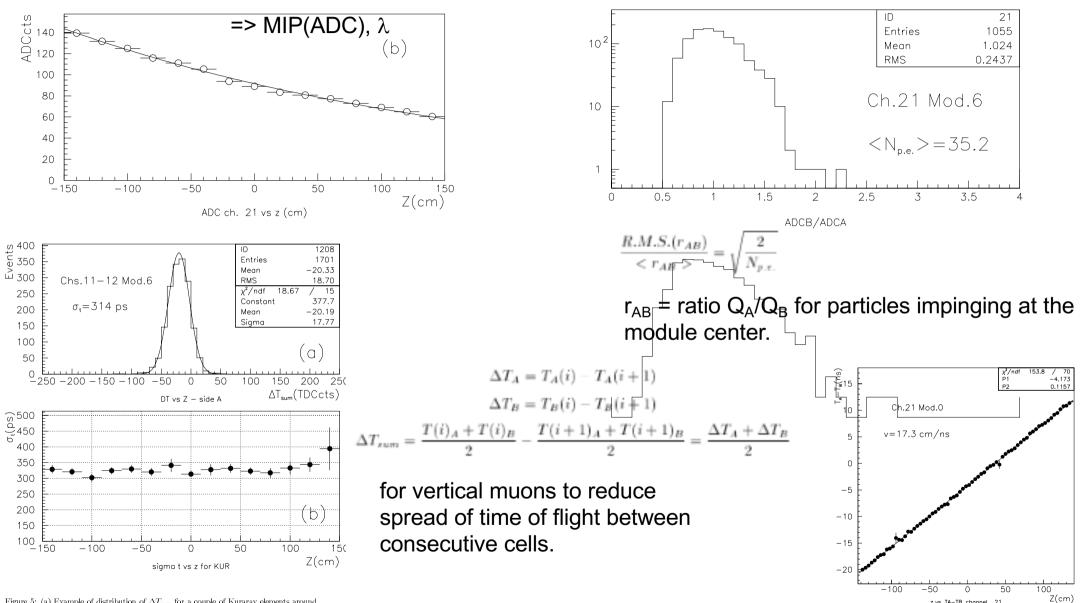
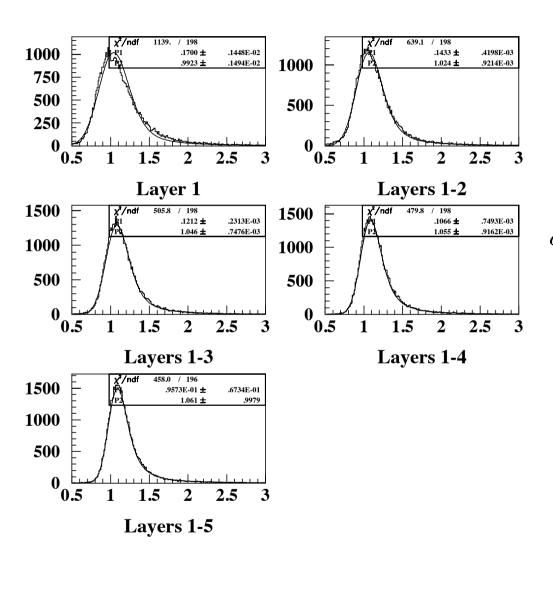
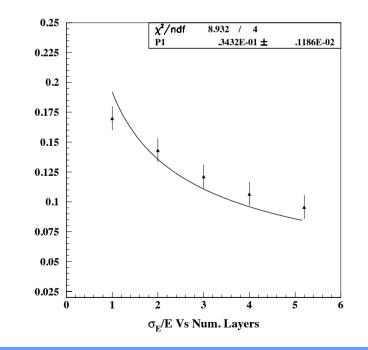


Figure 5: (a) Example of distribution of ΔT_{sum} for a couple of Kuraray elements around Z = 0. (b) Dependence of σ_t on Z.

z vs. TA-TB, channel 21


ECAL test with cosmic rays

Parameter	Mod. $0/01$	Mod. 3/01	Mod. $6/01$	Mod. $6/02$	Mod. 8/02	Mod.12/02
λ Kur.(cm)	354 ± 9	430 ± 10	435 ± 9	428 ± 8	431 ± 6	444 ± 6
λ PHT (cm)	234 ± 4	294 ± 5	309 ± 4	306 ± 5	325 ± 5	351 ± 5
$MIP~(\mathrm{ADC~cts})$ Kur.	78.3 ± 2.9	94.2 ± 3.5	108.3 ± 3.5	95.3 ± 3.1	99.3 ± 5.0	99.1 ± 6.0
MIP (ADC cts) PHT	56.6 ± 1.5	87.4 ± 2.3	102.4 ± 2.9	88.4 ± 1.9	89.8 ± 4.6	95.7 ± 6.0
$N_{p.e.}$ Kur.	24.3 ± 1.3	28.6 ± 0.8	32.0 ± 0.8	35.0 ± 0.7	34.8 ± 1.0	37.6 ± 0.8
$N_{p.c.}$ PHT	18.8 ± 0.5	26.9 ± 0.5	29.9 ± 0.6	31.3 ± 0.6	32.1 ± 0.5	33.3 ± 0.8
$\sigma_t(ps)$ Kur.	385 ± 5	367 ± 11	359 ± 11	313 ± 9	327 ± 12	334 ± 15
$\sigma_t(ps)$ PHT	532 ± 14	423 ± 26	399 ± 11	346 ± 5	321 ± 15	325 ± 7
$\sigma_Z(cm)$ Kur.	6.21 ± 0.10	6.38 ± 0.13	5.88 ± 0.12	5.21 ± 0.08	5.17 ± 0.10	5.37 ± 0.16
$\sigma_Z(cm)$ PHT	8.50 ± 0.16	6.90 ± 0.10	6.39 ± 0.10	5.97 ± 0.18	5.18 ± 0.21	5.03 ± 0.09



ECAL test with cosmic rays: energy resolution

$f(E) = A \cdot \int_0^\infty dE' L\Big(rac{(E'-E_0)}{\Delta_0}\Big)g\Big(rac{(E'-E)}{\sigma_E}\Big)$

- L(x) = Landau distribution
- A =normalization factor
- $E_0 = \text{most probable amount of energy released}$
- $\Delta_0 = ext{proportional to the Landau width}$
- $\sigma_E(E) =$ energy resolution

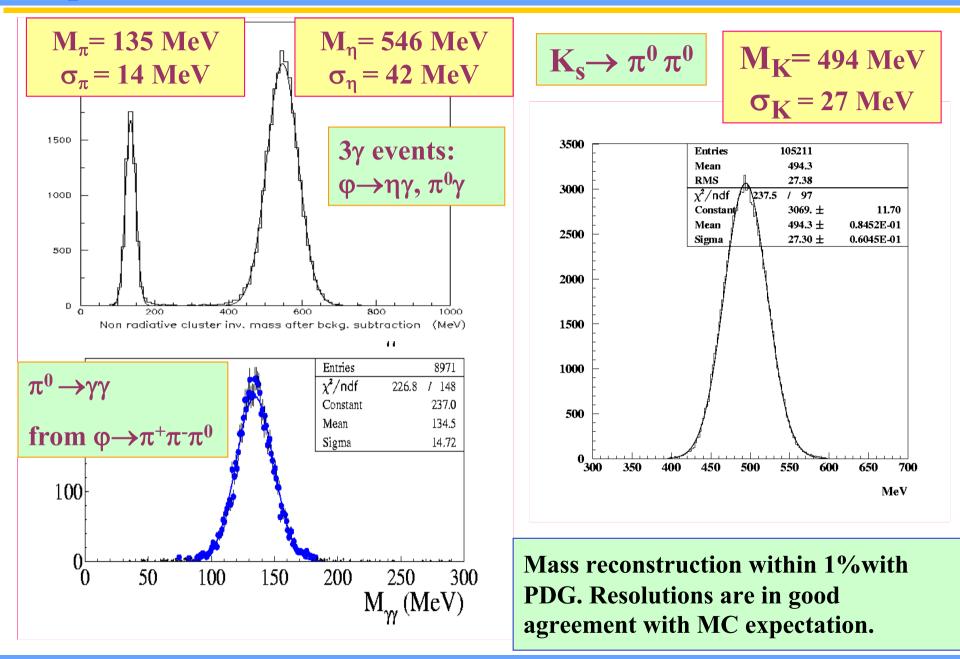
ECAL test at FNAL

Upon arrival at Fermilab, ECAL modules will be stored in a proper area for barrel and equipped with a crane of 5 t maximum load for handling barrel modules, and 15-20 t for handling Endcap modules. A controlled temperature environment is required in the storage and test area of ECAL modules, avoiding thermal stresses and keeping temperature changes within about $\pm 10^{\circ}$ C along the whole period.

The quality assurance (QA) and quality control (QC) operation will be performed repeating the tests on each module done at LNF. In particular, after re-installation of PMTs (shipped separately) in the ECAL modules, the ECAL module performance in terms of light yield, energy and time resolution using cosmic rays will be measured and checked again at a cosmic ray test stand, with the same equipment used at LNF, before installation in the SAND detector.

Storage area for barrel modules: ~50 m² Storage area for end-cap modules: ~60 m² Test area: 50-100 m² depending on the parallelization degree of the operations

spare slides


KLOE-to-SAND Project Time Schedule

						Add ta	asks with da	ites to the ti	meline				
	, 2022	Half 2, 2022	Half 1, 2023	Half 2, 2023	Half 1, 2024	Half 2, 2024	Half 1, 2025	Half 2, 2025	Half 1, 2026	Half 2, 2026	Half 1, 2027	Half 2, 2027	Half 1, 2028
ask Name 👻 👻	MM	J S N	J M M	J S N	J M M	J S N	J M M	J S N	J M M	J S N	J M M	J S N	J M M
KLOE2SAND													1
Drift Chamber Extraction	Г												
DC Tooling Draw and Construction													
Drift Chamber Extraction			i										
ECAL extraction			r										
ECAL Barrel Tooling Preparation													
ECAL Barrel Extraction					ř – – –								
ECAL Module Revamping					*								
ECAL Module Test						1						į	
Selection and test of readout electronics													
Procurement of HV System										:			-
Procurement of readout electronics												•	
ECAL EndCaps Tooling Preparation													
ECAL EndCaps Dismounting						*							
Packaging										L			
ECAL modules post-delivery QA/QC													
▲ COIL Extraction									1			T	
Coil PS and Cryo interface procurement													
Coil PS Installation							Ĭ.						
Coil Test								Ť T					
Disassembly of service turret													
Design and construction of extraction tooling													
Coil Extraction									†				
▲ Yoke Dismounting									Г	1			
Yoke Dismounting									1				
▲ Shipping			•				Г	•					
Shipping Preparation												<u>.</u>	

DUNE

Examples of mass reconstruction in KLOE

