Tunable PoF for future modules and CACTUS VD first steps

Meeting Annuale della Collaborazione Nazionale DUNE ITALIA Ferrara, 2024-10-30

Alessandro Andreani^{1,2}, Marco Bassani^{1,3}, Paolo Cova^{1,3}, Nicola Delmonte^{1,3}, Massimo Lazzaroni^{1,2}, Danilo Santoro^{1,3}, <u>Valeria Trabattoni^{1,2}</u>, Andrea Zani¹

¹ INFN Sezione di Milano
 ² Università degli Studi di Milano
 ³ Università degli Studi di Parma

Outline

- Introduction
- DC-DC Boost Converter
 - i. System overview
 - ii. Control design
 - iii. Test results
- DC-DC Converter with Optical link
 - i. Preliminary test results
- Conclusions and future developments

CACTUS VD

- i. Overview
- ii. From CACTUS (HD) to CACTUS VD

DUNE FD – Vertical Drift Technology (VD)

- Charge Readout Planes (CRP) are placed at top and bottom of the cryostat. CRP is composed by perforated PCBs and electrodes for charge collection
- Photon Detection System (PDS) modules installed on the cathode

F. Pietropaolo, The Vertical Drift LAr-TPC for the DUNE Experiment

High voltage (-300 kV) plane:

no conductive interconnections, but optical fiber technologies.

Solution:

- Signal over Fiber (SoF) to transmit output signals
- **Power over Fiber (PoF)** to supply the system

→ Output voltage of PoF is only of few volts: a DC-DC Boost Converter is used to obtain a stable and very low noise ~ 50 V output supply voltage for the PDS

DC-DC Boost Converter – Overview

- **DC-DC Boost Converter**: high voltage to bias SiPMs at cryogenic temperature (77 K for LN₂)
- Power supply provided by OPC (Optical Power Converter): V_{in} = 5 V

DC-DC Boost Converter proposed by Milano Statale - Parma group

- NEW!
- Pulse Width Modulated (PWM) generation with two possible controls:
 - Inner feedback setting output voltage at nominal point: V_{out} = 48 V
 - Optical input to change the setting voltage within few volts

DC-DC Boost Converter – Control design

- Triangle-Waveform Generator: it produces a triangle-like signal used for comparison, serving as a reference signal to control the Boost
- **PWM Generator:** it provides the MOSFET control signal, comparing an analog value with a triangle waveform
- Boost Section: responsible for storing the energy required to supply the SiPMs
- Feedback: it adjusts the analog level to counterbalance output variations and fix the operating point
- External Set Point: it can vary the output voltage using an external PWM

UNIVERSITÀ

DEGLI STUDI DI MILANO INFN

DC-DC Boost Converter – External control

NEW!

The DC-DC converter includes a **remote control** able to determinate different output voltages operating through a **connection at room temperature**, while power supply units remain unreachable inside the cryogenic set-up.

Internal feedback

Output voltage control at desired set point with two configuration:

- Nominal: set at design stage and fixed throughout the entire run (e.g. 48 V for Hamamatsu SiPMs)
- External: set point modified through external communication (nominal set point in case of failure or no external control)

An external signal can be provided by an optical fiber, using an optical-toelectrical converter.

The design target is that of providing PWM waveform and to be able **to adjust the output voltage of a few volts.**

DC-DC Boost Converter – Version 3

PoF DC-DC Boost Converter SiPM

Picture of one the prototypes tested with and without shields (top) and schematic of the DC-DC Boost Converter (bottom).

- **Discrete components** independently characterized at 77 K in the last two years
- Working version demonstrated in a test set-up at CERN
- Version 2 and Version 3 used in test set-up to bias SiPMs (Cryo-PoF by Marta Torti)
- Soldered an Electromagnetic Interference (EMI) shield over the boost to reduce noise
- Characterization of the advanced DC-DC prototype (DC-DC v3) with improved input and output filters, and optimized analog feedback control circuitry tested

DC-DC Boost Converter – Noise results

Motherboard (from ProtoDUNE at CERN) with the DC-DC board mounted for the noise measurements.

Employing a Koheron optical-electric converter board, the **output signal from the DC-DC** Boost Converter was monitored.

UNIVERSITÀ

DI MILANO

DEGLI STUDI

Noise Results in LN₂:

 Output voltage FFT measurements confirmed a noise reduction achieved with the EMI shield

INFŃ

UNIVERSITÀ

8

DC-DC Boost Converter – Test results

Measurements Results:

- T = 300 K: V_{out} is limited by the inductor series resistor
- T = 77 K: V_{out} = 68 V at 91% of duty-cycle
- T = 77 K at V_{out} = 48 V: efficiency is greater than 40%

UNIVERSITÀ

DEGLI STUDI

DI MILANO

INFN

UNIVERSITÀ

- Ascending at low duty-cycles: low current consumption
- Descending at high duty-cycles: high current consumption

DC-DC Converter – Remote control results

Test Results:

- Linear trend in the output voltage with the external duty-cycle
- **Steeper slope** at 77 K: saturation of the curve before 50% duty-cycle of the external signal

* Waveform generator for the external signal

Optical link for remote control – Tests

Study of the DC-DC Boost Converter with **remote control via optical link.**

Preliminary tests performed at room temperature and 77 K.

Interfaced board mounted on the DC-DC Converter.

DC-DC Boost Converter plugged into the ProtoDUNE motherboard.

Optical link for remote control – Results

Test Results:

- Linear trend in the output voltage with the external duty-cycle
- Steeper slope at 77 K: saturation of the curve before room temperature case
- Limit for output voltage at 77 K:
 V_{out} = 56 V
- Tests have to be further performed to investigate the performance

New activity – CACTUS VD

CACTUS (Cryogenic Apparatus for Control Tests Upon SiPMs) for automatic **SiPMs characterization** at room and liquid nitrogen temperature.

Each SiPM has dimensions of $6 \times 6 \text{ mm}^2$ and each of them is passively ganged on one flexible Kapton PCB strip \rightarrow Flexi PCB (i.e., one 30 cm flexible board has 20 SiPMs)

It is reasonable to think of a number close to <u>5800 Flexi boards</u> to be tested.

INFN

UNIVERSITÀ

DEGLI STUDI

DI MILANO

Design of CACTUS VD

Recyclable and/or reusable parts with modifications from CACTUS HD (to be further investigate):

- Warm Boards for signals read out (with modifications)
- LabVIEW program must be implemented starting from actual version

Ex novo parts for CACTUS VD (to be further investigated):

- Design Cold Boards (where the Flexi are installed during the test)
- Manufacturing of Cold Boards
- Mechanical structure

Schedule:

We estimated about 130 days to complete the tests but considering the rounding done (tests to be redone, spare parts, preliminary tests, etc.), we arrive at an **estimate of 150 days**: 2 measurements cycles per day (morning and afternoon)

 \rightarrow We are evaluating a semi-manual or automatic testing procedure to verify if the individual SiPM is functioning properly or not (to be discussed)

Conclusions and future developments

DC-DC Boost Converter version 3:

- Improved performance at cryogenic temperature compared to room temperature
- Noise reduction achieved through the EMI shields
- Control studies provided an understanding of how the output varies in relation to the duty cycle of the **external signal**
- More tests to **investigate the performances** of the circuit in more complete configuration

Next steps for <u>CACTUS VD</u>:

- Ongoing tests aimed at defining the design of CACTUS VD
- More preliminary tests are mandatory (Flexi boards in the future)
- Some activities are on going; funds have been required and available from 2025

We will keep the Collaboration updated

