Solar neutrinos in DUNE and SoLAr

Activities in Milano-Bicocca

DUNE Italia Meeting - October 30, 2024

Daniele Guffanti, Maritza Delgado, Federico Galizzi University & INFN Milano-Bicocca

Opportunities at low-energy

- > Supernova neutrinos
- ⁸B + hep solar neutrinos
 - > ⁸**B**: Complementary measurement of θ_{12} and Δm_{12}^2 + Solar core temperature
 - > hep: Only component of the solar neutrino flux still undetected

LArTPC can probe this energy region without charge multiplication **Complementary** to LS/Cherenkov experiment

MicroBooNE, arXiv:2410.18419 MicroBooNE, *Phys.Rev.D* 109 (2024), arXiv:2307.03102

Solar neutrinos in DUNE

- Reconstruction for low energy events using a hit-clustering scheme based on channel and time proximity (3 channels, 12.5 μs window).
- > Electron energy resolution \approx 10% (ideal drift reconstruction).

- High background level
- Difficult matching between PDS and TPC clusters
 - Flash-matching proposal
- Energy resolution can be improved
- Charge+Light calorimetry at low-energy

DUNE-IT. 30.10.2024

PDS simulation...

- Production phenomenological model modifying the Birks' charge recombination model and reproducing light/charge anticorrelation and its dependence with ^{dE}/dx and E_{field} [F. Marinho et al., 2022 JINST 17 C07009]
- > Propagation photons ray-tracing unbearable in G4
 - $\hookrightarrow \textbf{Semi-analytical} ~ \text{light propagation model}$

$$N_{ph\ hit}^{opdet\ i} = N_{ph} \cdot Q_{abs} \cdot Q_{trans} \cdot G(d, \theta) \cdot T(d, \theta) \cdot QE_{eff}$$

[D. Garcia-Gamez et al, Eur.Phys.J.C 81 (2021) 4, 349]

> Digitization produce a digitized waveform for each PDS channel

OpDetDigitizerDUNE_module uses a **testbench model** for the SiPM's single p.e. response

> Waveform filtering for restoring the "true" photon hit's time profile removing the SiPM impulse response

Deconvolution_module implements two digital filters (Wiener, SBND) for removing the possible undershoot in the SiPM response Now used in ProdoDUNE-HD LArSoft analysis

PDS simulation and reconstruction - automatic validation

Motivation

Automatize the production of high statistics datasets and the comparison of selected distributions with a reference sample

Originally focused on PANDORA reconstruction, now including much more (gen, sim, hit level) + **PDS**

General structure

- > Process run using the lar_ci framework
- Define a workflow specifying the nr of jobs + number of events + progress of simulation & reconstruction stages [gen, g4, sim, reco]
- > Produce distributions for different variables and compare them with a reference

Workflow

Simulation workflow follows the "standard" adopted for PDS studies within the low-energy WG

- 100k events simulated by MARLEY with flat energy spectrum
- > sim and reco stages for light only
- ightarrow pprox 5 h run time

Validation

Prepare histograms and compare with reference

- > FD-specific list of histograms keys to be compared
- > Compatibility quantified using a simple $\chi^{\rm 2}$ as "test-statistics"
- Compute residuals between validation and reference distributions

PDS simulation and reconstruction - automatic validation

DUNE HD PDS Validation v09_88_00d00

Reco

Reconstructed variables

Solar-, in DUNE and SoLAr

DUNE Release	Parameter	Chi2
v09_85_00d00 vs v09_88_00d00	reco/effLY_map	1.036374
v09_85_00d00 vs v09_88_00d00	reco/ophit_distr	0.875366
v09_85_00d00 vs v09_88_00d00	reco/recope_vs_distance	1.413047
v09_85_00d00 vs v09_88_00d00	reco/recope_vs_opDet	0.874868
v09_85_00d00 vs v09_88_00d00	reco/opdet_avg_ne	0.874868
v09_85_00d00 vs v09_88_00d00	flash/n_opflash	1.616197
v09_85_00d00 vs v09_88_00d00	flash/flash_pe	0.835508
v09_85_00d00 vs v09_88_00d00	flash/flash_pe_event	0.846874
v09_85_00d00 vs v09_88_00d00	flash/flash_purity	454.048895
v09_85_00d00 vs v09_88_00d00	g4_experimental/opdet_avg_ge	1.010757
v09_85_00d00 vs v09_88_00d00	g4_experimental/opdet_avg_trueph_direct	0.876648
v09_85_00d00 vs v09_88_00d00	g4_experimental/opdet_avg_trueph_reflected	0.779359
v09_85_00d00 vs v09_88_00d00	g4_experimental/trueph_time_profile_direct	2.099404
v09_85_00d00 vs v09_88_00d00	g4_experimental/trueph_time_profile_reflected	3.649947
v09_85_00d00 vs v09_88_00d00	g4_experimental/direct_trueph_vs_distance	1.663674
v09_85_00d00 vs v09_88_00d00	g4_experimental/reflected_trueph_vs_distance	2.407212
v09_85_00d00 vs v09_88_00d00	g4_experimental/total_recope_vs_trueph_prf	0.965064
v09_85_00d00 vs v09_88_00d00	g4_experimental/opdet_recope_vs_trueph_prf	0.959080

Flash Flash variables

PDS simulation and reconstruction - automatic validation

INF

Next steps at low-energy

- > Combined charge+light calorimetry requires correct matching of PDS and TPC signals
- > Low energy challenge: $\mathcal{O}(100)/(1000)$ flash candidates per TPC cluster in FD HD/VD
- ▶ Idea: make use of the light propagation model to select the most compatible match Low-energy events ~ point-like → described by 5 parameters $\theta = \{x = \{x, y, z\}, t, E\}$

TPC hits constrain *E* + position on the anode (*y*, *z*)

PDS flash constrains E + time \rightarrow position along drift (x)

For each flash candidate evaluate a likelihood function like

[Patterson et al, Nucl.Instrum.Meth.A 608,2009]

$$\mathcal{L}(\{\mathsf{opHit}\}|\boldsymbol{\theta}) = \prod_{i}^{\mathsf{unhit}\,\mathsf{XA}} (1 - P(i\,\mathsf{hit}|\boldsymbol{\theta})) \cdot \prod_{i}^{\mathsf{hit}\,\mathsf{XA}} P(i\,\mathsf{hit}|\boldsymbol{\theta}) f_q(q_i|\boldsymbol{\theta}) f_t(t_i|\boldsymbol{\theta})$$

where each term can be evaluated from the detector response and light propagation model (e.g., opDet visibility maps built with PhotonVisibilityExport_module)

Towards DUNE Phase II: SoLAr

SoLAr Roadmap

Phase I: Prototyping

Development of integrated charge+light readout

Phase II: Medium Scale ExperimentPhase III:First detection of solar neutrinos in LArDUNE MoO

- Prove low-energy performance
- Validate target energy resolution
- Test background suppression methods

D. Guffanti (University & INFN MiB) S

Solar-. in DUNE and SoLAr DUNE-IT, 30.10.2024

SoLAr prototyping activities: SoLAr_v1

event 132 zy view event 135 zy view event 145 zy

> Charge readout:

256, 3 \times 3 mm² pads, readout by 4 LArPix v2a ASIC + PACMAN

> Light readout:

16 Hamamatsu S13370-6050CN (6 \times 6 mm²) + Cold pre-amp + Warm amp + 62.5 MS/s digitizer

> Anode assembly:

Three stacked PCB layers to accommodate SiPMs packaging SiPM floating bias to enhance charge collection

Test outcome

Solar- in DUNE and Sol Ar

- combined operation of charge+light sensors
- > calorimetric response ok

SoLAr prototyping activities: SoLAr_v2

- Tile dimension: 32 × 32 cm² (active area 25.6 × 25.6 cm²)
- > Divided into 8 \times 8 regions (64 4 pixel, 1 SiPM)
- > 20 LArPix (room for 64)
- > 64 Hamamatsu VUV MPPC with independent readout
- > Complete re-design of the PCB

SoLAr tile V1

Three PCB stacked

Single multilayer PCB

SoLAr_v2: Operations

- > 30 cm drift length
- > Un-routed pads grounded with copper tape
- 2 days of cosmic data taking with nominal HV 15 kV + special runs at 7.5 and 3.75 kV
- > Additional run with ⁶⁰Co source
- Sood LAr purity
- > Low charge hit threshold pprox 3.8 ke
- few dead areas on the anode

Solar- in DUNE and Sol Ar

SoLAr_v2: Preliminary results

SiPM waveform analysis

- SiPM waveform show a characteristic undershoot due to electronics coupling
- SiPM impulse response studies with dedicated LED runs
- > Various waveform filtering strategies (Wiener filter, ...)
- Residual baseline modulation corrected applying a SNIP algorithm

Preliminary results

- \blacktriangleright Scintillation time profile obtained averaging filtered waveforms from \approx 80 min cosmic run
- Slow time constant and relative weight of fast/slow component show a small discrepancy with expected values

SoLAr v2: Preliminary results

Charge hit analysis

> Clustering

Solving ambiguities due to dead areas using simulated data

> Track fit

Identify outliers and secondary tracks

Solar- in DUNE and Sol Ar

Preliminary results

- Track length distribution influenced by dead areas on the anode tile
- dQ/dx distribution compatible with similar experiments

SoLAr simulation

solar-sim Geant4-based simulation package

- Geometry description in external configuration file (including cavern, cryostat)
- > Physics
 - Multiple generators integration: MARLEY, BxDecayO, CRY, RadSrc, Externals, ...
 - > HP Physics for *n* and low-energy ions
 - > Currently integrating G4Cascade for (n, γ) cascades
 - > Includes charge-light anticorrelation (LArQL)
 - > Geant4 ray-tracing for optical photons
- > Include charge diffusion and pixel readout effects (in progress)
- > Ongoing studies:
 - > SoLAr_v2 run
 - > end-to-end simulation of neutron background
 - > oscillation parameters sensitivity

Outlooks

PDS Simulation and Reconstruction

- MiB activities in PDS simulation and reconstruction covers a significant part of the workflow (Digitizer, Deconvolution, Production of visibility maps)
- > Develop automatic validation of PDS simulation and reconstruction based on Low-Energy WG studies
- ➤ Ready use our expertise on PDS for flash-matching with high background level
 → key step towards combined calorimetry at low-energy

SoLAr

- > Two prototyping runs demonstrated the technological concept Track reconstruction, matching light flash, analysis ongoing
- > Developed a simulation package to establish the detector requirements and guide the design

