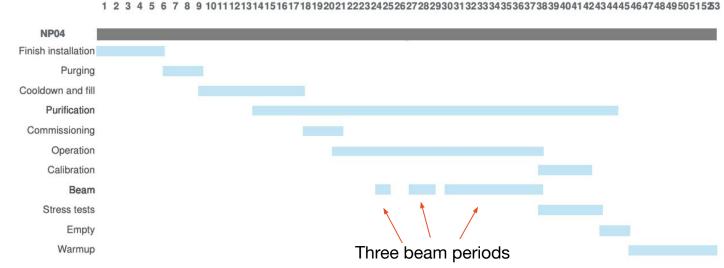
The PDS @ ProtoDUNE-HD: IV curves and first beam results

Anna Balboni, on behalf of the PDS team

Meeting Annuale della Collaborazione Nazionale DUNE ITALIA 30/10/2024

Content

- ProtoDUNE-HD run overview;
- IV curves and Breakdown voltage;
- Light yield vs Energy beam;
- Channel saturation.


1. ProtoDUNE-HD run

3 30/10/2024 Anna Balboni | The PDS @ ProtoDUNE-HD: IV curves and first beam results

Overview

- **ProtoDUNE-HD** is the prototype of the LArTPC with Horizontal Drift technology that will be used for the first module of the DUNE Far Detector, incorporating full-size components and an active volume of $7 \times 6 \times 7.2$ m³.
- It operated during summer 2024 at CERN North Area and was exposed to e^{\pm} , μ^{\pm} , p and K[±] beams with energy of 1, 2, 3, 5 and 7 GeV, collecting about 30M events.

Jan

Italian group contribution

- Selection, production and tests of SiPMs.
- Assembly and testing of ~50% of the PDS modules.
- PDS module tests at CERN cold box.
- Cryogenic electronics development and validation of the DAPHNE analogue component.
- Firmware modification for the implementation of filters and trigger algorithms.
- Installation, commissioning and data taking.
- Data analysis.

2. IV curves and Breakdown voltage

6 30/10/2024 Anna Balboni | The PDS @ ProtoDUNE-HD: IV curves and first beam results

Overview

- To monitor the ProtoDUNE-HD PDS performances during its operation, the main parameters are periodically measured in appropriated calibration runs and compared with results previously obtained in laboratory.
- Reverse IV curves are acquired to compute the **Breakdown voltage**.
- Each IV curve is related to a DAPHNE channel, i.e a X-ARAPUCA module (48 SiPMs).
- The operation voltage is then adjusted to ensure a uniform PDE across all channels.
- Tools for the IV curves analysis and results are in the PDS git repository.
- The analysis is organized in different steps:
 - 1. Vbd determination;
 - 2. Vbd quality check;
 - 3. Vop determination.

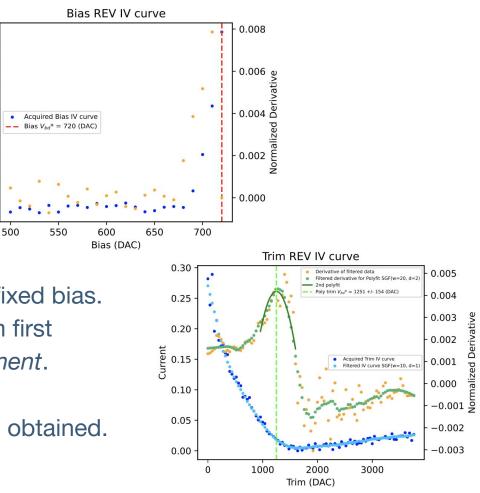
Vbd determination

• DAPHNE front-end boards allow to perform IV scans. The voltage is supplied in two stages:

0.200

0.150

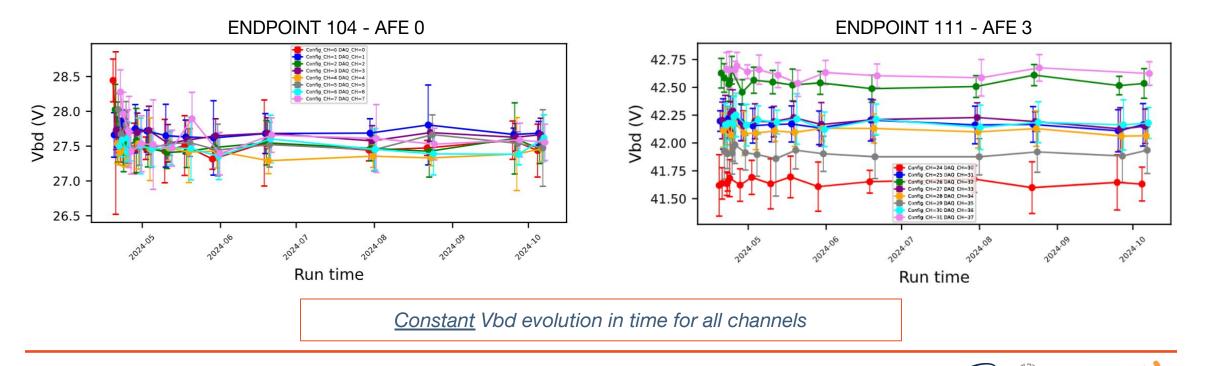
0.125


0.100

0.075

0.050

0.025


- 1. Bias, in steps of ~0.7 V
- 2. Trim, in negative steps of ~1 mV.
- The procedure is the following:
 - A <u>bias scan</u> up to a fixed voltage limit is performed. The last bias point is taken as *Vbd_bias_component* and starting point for trim scan.
 - 2. A <u>trim scan</u> is performed, between 0 and 4000 DAC with fixed bias. The trim IV curve is analyzed and a parabolic fit of the trim first normalized derivative is done, to obtain *Vbd_trim_component*.
 - 3. By combining bias and trim info, the channel **Vbd** value is obtained.

Vbd quality check

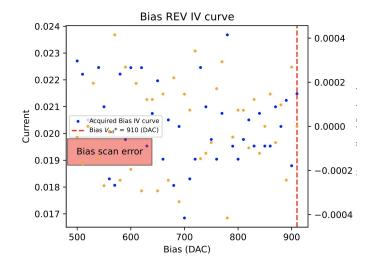
- IV curve and Vbd results are checked manually and anomalies are noted in this <u>file</u>.
- The Vbd distribution of all channels is studied and Vbd values are compared with previous results.
- The Vbd evolution in time is checked.

مين " و سکن د

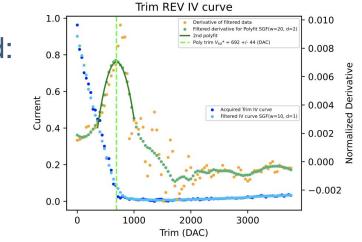
degli Studi

ÍNFN

Vop determination

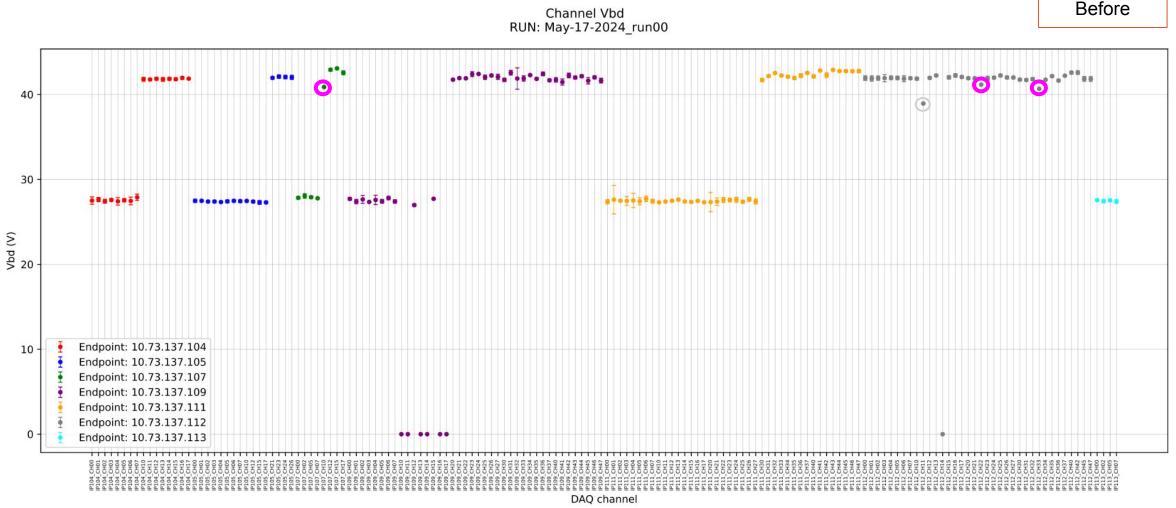

- The Vbd mean value of each channel is computed, by using only good run data, and it is taken as best estimation of the breakdown voltage.
- The operation voltage is estimated by adding a given overvoltage to the Vbd mean value and specific **json maps** for DAPHNE configuration are produced.

```
"10.73.137.104": {
 "id": 4,
 "apa": "1",
 "ch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
 "bias": [783, 1135, 0, 0, 0],
                                                                                               Bias fixed per AFE (8 ch)
 "ov": {"fbk": 4.5, "hpk": 3.0},
                                                                                                   Trim fixed per CH
 "run": "Vbd best 20240730" },
"10.73.137.105": {
 "id": 5.
 "apa": "1",
 "ch": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22],
 "bias": [809, 806, 1156, 0, 0],
 "ov": {"fbk": 4.5, "hpk": 3.0},
 "run": "Vbd best 20240730" },
```

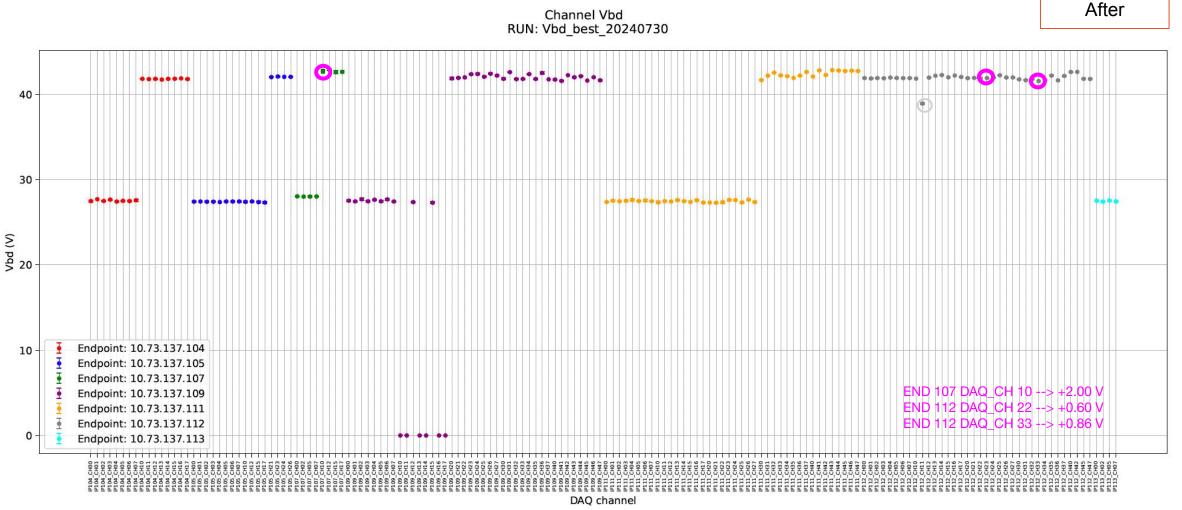


Vbd anomalies

- 6 disconnected channels in endpoint 109:
 - DAQ_ch 11, 13, 14, 16 \rightarrow missing file
 - DAQ_ch 10, $17 \rightarrow only noise$

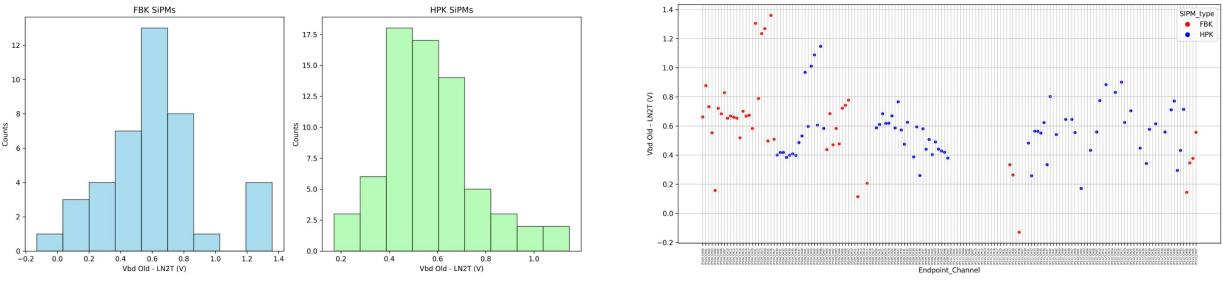


- 4 channels with steep IV curve, resulting in a low Vbd:
 - DAQ_ch 10 in endpoint 107
 - DAQ_ch 11, 22, 33 in endpoint 112


Three channels with steep IV curve were recovered, by adding an additional overgoltage.

DAQ_ch 11 in endpoint 112 can't be recovered

These are the Vbd values used from the beginning of August.



DAQ_ch 11 in endpoint 112 can't be recovered

ProtoDUNE-HD and LAr Vbd comparison

- Comparison between:
 - Vbd measured in LAr inside ProtoDUNE-HD using DAPHNE, by studying IV curves;
 - Vbd measured during LN2 tests before supercells assembling.

- A LAr LN2 Vbd difference is expected due to the different temperatures:
 - Mean FBK $\Delta V_{bd} = 0.61 V$
 - Mean HPK $\Delta V_{bd} = 0.57 V$

Summary

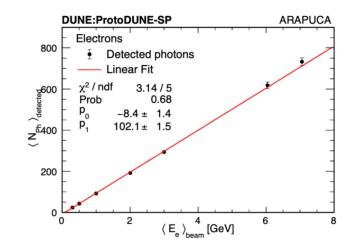
				APA 1			APA 2		APA 3		APA 4				
107-0	107-2	107-5	107-7	109-41	109-43	109-44	109-46	111-27	111-25	111-22	111-20	112-47	112-45	112-42	112-4
107-17	107-15	107-12	107-10 +2.0V	109-47	109-45	109-42	109-40	111-40	111-42	111-45	111-47	112-31	112-33 +0.86V	112-34	112-:
105-10	105-12	105-15	105-17	109-11	109-13	109-14	109-16	111-26	111-24	111-23	111-21	112-37	112-35	112-32	112-
105-26	105-24	105-23	105-21	109-17	109-15	109-12	109-10	111-10	111-12	111-15	111-17	112-21	112-23	112-24	112-3
105-1	105-3	105-4	105-6	109-1	109-3	109-4	109-6	111-16	111-14	111-13	111-11	112-27	112-25	112-22 +0.6V	112-3
105-7	105-5	105-2	105-0	109-7	109-5	109-2	109-0	111-41	111-43	111-44	111-46	113-0	113-2	113-5	113-
104-11	104-13	104-14	104-16	109-31	109-33	109-34	109-36	111-37	111-35	111-32	111-30	112-16	112-14*	112-13	112-1
104-17	104-15	104-12	104-10	109-37	109-35	109-32	109-30	111-0	111-2	111-5	111-7	112-10	112-12	112-15	112-1
104-1	104-3	104-4	104-6	109-21	109-23	109-24	109-26	111-36	111-34	111-33	111-31	112-6	112-4	112-3	112-
104-7	104-5	104-2	104-0	109-27	109-25	109-22	109-20	111-1	111-3	111-4	111-6	112-0	112-2	112-5	112-

IV curve status

before 24th September

- 144 channels with good IV curve;
- 6 channels with noisy IV curve, working well;
- 6 dead channels, disconnected from the beginning;
- 4 channels with steep IV curve, that results in improper V_{bd} estimation which leads to a channel underbiasing (3 channels were recovered through an additional overvoltage).

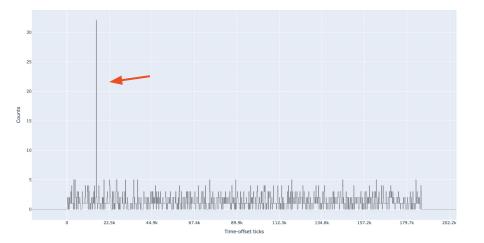
Important: on 24th September, channels of endpoint **104**, **105** and **107** were all moved to the same daphne, identified with ip **104** (see the <u>updated configuration</u>, <u>updated iv map</u> and <u>new-old comparison plots</u>)


3. Light yield vs Energy beam

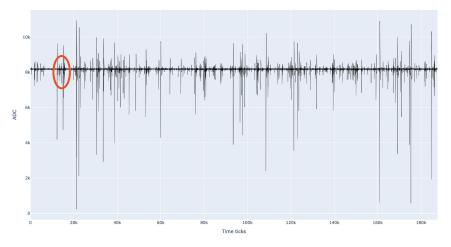
16 30/10/2024 Anna Balboni | The PDS @ ProtoDUNE-HD: IV curves and first beam results

Overview

- The goal of this analysis is to study the **light yield** (LY) as a function of **beam energy** (E) and obtain results comparable to <u>ProtoDUNE-SP</u>.
- To compute LY, the amount of light produced after a beam event occurred must be estimated. This can be done by looking at the **charge** of a **beam signal** and then, thanks to calibration runs, switch to the number of photoelectrons.
- Now, the analysis is organized in different steps:
 - 1. Select waveforms associated to beam events;
 - 2. Compute the charge, as signal integral in an appropriate range;
 - 3. Study the charge distribution and evaluate the mean value;
 - 4. Study the integral charge value as a function of the beam energy.
- The self-trigger and the full-streaming procedure for beam even selection is a bit different.

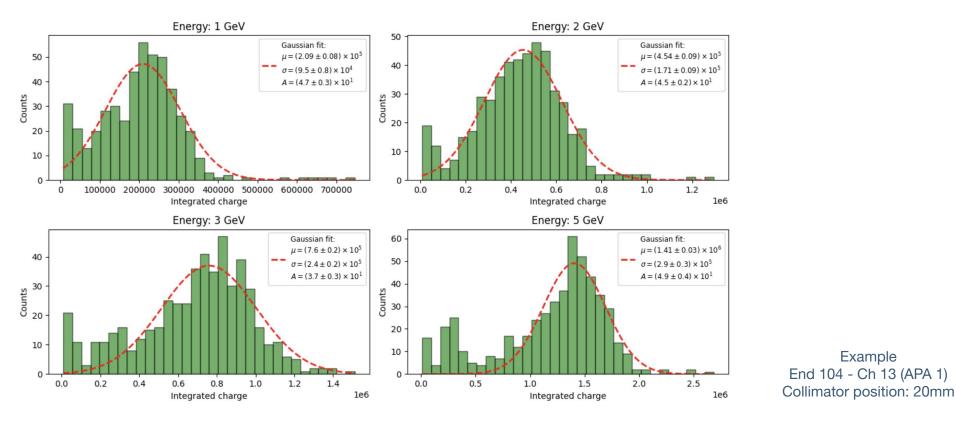


Beam event selection

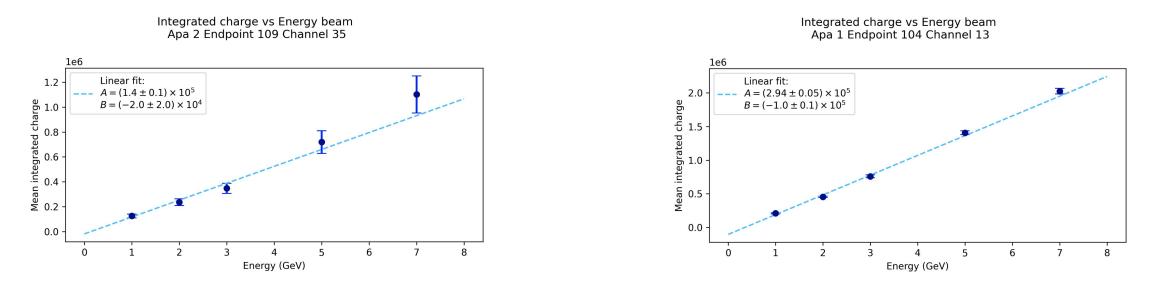

Self-trigger channels

- 1. The **time-offset** of each waveform is computed, i.e. the difference between the DAQ and the PDS window timestamps.
- 2. The time-offset distribution is studied, searching for a peak, due to beam interaction.
- 3. Only waveforms associated to a time-offset in a small range around that peak are selected.

Full-streaming channels


- 1. The whole PDS window (~3 ms) is studied, plotting many waveforms on the same diagram and looking for a darker region, where there should be a concentration of events due to the beam interaction.
- 2. Only waveforms within the identified timestamp region are studied.

Charge distribution


- The charge of the beam waveform is computed as the integral in a given integration range.
- The change distribution is studied and its mean value is obtained from the gaussian fit.

First results and next steps

• I started to analyze five runs of June, with collimator at 20 mm, no selection on Cherenkov detectors and Energy at +1 (27338), +2 (27355), +3 (27361), +5 (27367) and +7(27374) GeV.

- Next steps are:
 - Increase statistics, in particular for self-trigger channels.
 - From the integrated charge, compute the number of photoelectrons.
 - Obtain beam information and look at runs with specific charge particles.

4. Channel saturation

21 30/10/2024 Anna Balboni | The PDS @ ProtoDUNE-HD: IV curves and first beam results

First results and next steps

- It's important to check if some channels saturate due to beam events, by looking at the ADC amplitude of the waveforms signals.
- From a first analysis of APA 1 (full-streaming), looking at run 27374 of the June beam period, with energy = +7 GeV and collimator position = 20 mm:
 - END 105, CH 12 shows 8% of saturated beam events;
 - END 105, CH 4 shows 1.2 % of saturated beam events:
 - END 104, CH 10 12 16 and END 105, CH2 3 6 21 23 24 shows 0.5% of saturated beam events.

Some saturated events could be connected to cosmic ray interaction, during the beam window. These channels are currently under investigation.

- A first rough analysis (with few statistics) of self-trigger channels was performed, and no anomalies were noticed in this run.
- Self-trigger channels and other runs analysis is ongoing.

Thank you for the attention!

