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Attosecond many-electron 
quantum dynamics in matter 

Electron Orbit in 
Bohr Model

Torbit  150 as for 
H ground state

Many-electron motion timescale 0.1 – tens of femtoseconds

Time (s)

Attosecond science 

Access electron dynamics on their natural timescalesAgostini, Krausz & 

L’Huillier 

Nobel Physics 2023



Why do the ultrafast dynamics of 

electronically excited systems matter to us ?

❑ Photo-excitation/ionisation primary event for key processes such as charge 

migration/transfer and energy transfer.

❑ Coherent superpositions of electronic states to drive new chemistry? 

…..“Attochemistry” ?

❑ Experimental test-bed for quantum information in open multi-partite quantum 

systems. 

❑ Ultrafast creation and manipulation of microscopic currents in solid-state 

materials. Test ultimate physical speed limits of electron-based metrology, optical 

charge manipulation and signal processing in opto-electronic devices. 



❖ Photoionization creates non-

stationary state of molecular ion

❖ Charge migration: the hole 

charge oscillates across the 

molecule on attosecond 

timescales

❖ Nuclear motion – hole 

localization and new paradigm of 

“charge-directed” reactivity” 

important to photochemistry, 

biological radiation damage, etc., 

[Lünnemann, Kuleff & Cederbaum, 
Chem. Phys. Lett. 450, 232 (2008)]

First attempts of time-resolved observation 

Attosecond XUV pump – IR probe 

spectroscopy on phenylalanine, monitoring 

ion-fragment yield [Science 346, 336 (2014)]

Most notorious example: ultrafast charge migration 

upon molecular photoionization 



Open Questions

❑ Can we prepare and control electronic coherence in molecules?

❑ Does purely-electronic coherent dynamics exist ?

❑ How long does it survive for? 

❑ How does electronic coherence evolve into longer-lived vibronic 

coherence?

Paraxylene dipeptide 
[PRL 118, 083001 (2017)]

Nuclear motion
GS quantum 

nuclear distribution

[PRA 92, 

040502(R) (2015)]

Possible mechanisms of 

electronic decoherence



Need for Attosecond Pump-Probe Spectroscopy & 

Direct probing: target electronic degrees of freedom 

directly 

Need for advanced first-principles theory of 

electronic coherence to design, guide and 

interpretation these complex experiments

Challenges

❑ Can we prepare and control electronic coherence in molecules?

❑ Does purely-electronic coherent dynamics exist ?

❑ How long does it survive for? 

❑ How does electronic coherence evolve into longer-lived vibronic coherence?

CEXP

CTEO



FERMI FEL @ELETTRA (Trieste) 

➢ Seed wavelength: 266 nm

➢ Wavelength range: 100-4 nm

➢ Pulse energy: tens of J

➢ Even and odd harmonics

Towards attosecond time-resolved experiments

Longitudinal coherence !

Amplitude & phase manipulation of 

harmonic components of an attosecond 

pulse train [Nature 578, 386 (2020)]

✓ Attosecond pulse shaping

✓ Coherent control

✓ Attosecond resolution

CEXP



[Nat. Phot. 14, 30 (2020); 
Nat. Phot. 18, 691 (2024)]

Soft X-ray: X-LEAP technique at LCLS-II (SASE X-ray FEL)

[Sci. Adv.10, eadk9605 (2024)]

Towards attosecond

time-resolved experiments

XUV: High order Harmonic Generation sources 

at Max Born Institute (Berlin) 

Attosecond duration

CEXP



Advantage of attosecond X-ray pump-probe

X-ray absorption spectroscopy 
(XAS) resonant core shell - specific inner 

valence hole state (IVH) to monitor hole 
amplitude at given delay time

X-ray photoelectron emission 

spectroscopy (XPS) (valence or 

core shell) – also sensitive to valence 

state evolution with delay core 

XPS

valence 

XPS

✓ Electronic state & atomic site specificity in probe – C, N, O K-edges (Water Window)

✓ Pump-probe arbitrary delay & now reaches sub-fs resolution

✓ “Weak” non-disruptive X-ray probe field

Access to < 10-10 m spatial and < 10-15 s temporal scales 

to fully track the dynamics driven by electronic ionization and excitation

CEXP



Compact laser-plasma-accelerators - driven FELs
CEXP

Experimental set-up of SASE and seeded PWFA-based FEL at SPARC_LAB

Beam- & Laser- driven wakefield acceleration FELs [Nat. Phot. 18, 780 (2024)]

[Nature 605, 659 (2022); PRL 129, 234801 (2022)]

Grand Challenge: 

FEL radiation

 from vacuum UV to soft X-ray 

at EuPRAXIA@SPARC_LAB



Ion-photoelectron 

entanglement 

Fundamental theoretical understanding: 

quantum coherence upon photoionization?

What is the final state upon ultrafast  

molecular photoionization? 
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Molecular ion 

in a pure quantum state
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First-principles theory: 

Time-dependent B-spline RCS-ADC method

Quantum Chemistry 

ground and excited states
Photoelectron description

State-of-the-art ab initio method: time-dependent (TD) multicentre- B-spline  
restricted correlation space (RCS) – algebraic diagrammatic construction ADC

[M. Ruberti, JCTC 14, 4991 (2019); 

M. Ruberti, PCCP 21, 17584 (2019); 

M. Ruberti, Faraday Discuss. 228, 286 (2021)]
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XAS probe scheme

Correlation-Driven Transient Hole Dynamics Resolved 

in Space and Time in the Isopropanol Molecule

Coherence Regime

[Phys. Rev. X 11, 031048 (2021)]

Experiment led by Dr. James Cryan at LCLS

X-ray FEL Pulse duration

~ 3 femtoseconds



“Breathing dynamics” from initially localised hole to extended states. 

Revivals damped by nuclear zero-point spread.

Transient 6A hole states probed by 

X-ray spectroscopy

6A measured with ~ 2.5 fs pulses, 

indicates a few-fs (2-3) decay time

Consistent with the decay driven 

by electron correlation predicted 

by ADC theory

[Phys. Rev. X 11, 031048 (2021)]

ADC(3) 

~ 500 geometries



Electronic Quantum Coherence in Glycine Molecules 
Probed with Ultrashort X-ray Pulses in Real Time

Experiment led by Dr. Tim Laarman at FLASH

X-ray split-and-delay with a short pulse for a 

single colour pump-probe measurement.  

Coherence Regime

[Sci. Adv. 8, eabn6848 (2022)]



[Sci. Adv. 8, eabn6848 (2022);

Structural Dynamics 9, 064301 (2022)]

Electronic Quantum Coherence in Glycine Molecules Probed 
with Ultrashort X-ray Pulses in Real Time

Coincident detection of 1st + 2nd photoelectron + Gly2+  fragment

Electronic dynamics consistent with periodicity ~ 20 fs, in 

excellent agreement with the predictions of B-spline RCS-ADC
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Attosecond Campaign @ LCLS: Real-time Observation of 

Ultrafast Electron Motion Using Attosecond XFELs
Led by James Cryan, Agostino Marinelli, Peter Walter (SLAC)

[T. Driver et  al., arXiv:2411.01700 [physics.chem-ph]]

2-colour X-ray pump-probe experiment at LCLS-II

X-ray probe absorption at O K-edge 

maps to transient valence electron 

density at oxygen site

https://arxiv.org/abs/2411.01700
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Attosecond Campaign @ LCLS: Real-time Observation of 

Ultrafast Electron Motion Using Attosecond XFELs

Led by James Cryan, Agostino 

Marinelli, Peter Walter (SLAC)

[T. Driver et  al., 

arXiv:2411.01700 [physics.chem-ph]]

Coherence Regime

https://arxiv.org/abs/2411.01700
https://arxiv.org/abs/2411.01700


[M. Ruberti, V. Averbukh, F. Mintert, 

Physical Review X 14, 041042 (2024)]

Bell Test of Quantum Entanglement in 

Attosecond Photoionisation

? Rabi dynamics 

with UV-XUV 

FEL pulses ?



Outlook 

☺Attosecond pump-probe experiments with X-ray FELs provide unique powerful 

schemes to access attosecond quantum-coherent electron dynamics with 

unprecedented time resolution.

☺Description and interpretation of these novel experiments in polyatomic 

molecules requires state-of-the-art ab initio methods such as Time-dependent B-

spline RCS-ADC. 

☺Quantum electronic coherence & entanglement can be calculated from first-

principles in photoionized many-electron systems. 

[M. Ruberti, V. Averbukh, WIREs Comput. Mol. Sci. 13, e1673 (2023); 

O. Alexander, J. Marangos, M. Ruberti, M. Vacher, Attosecond electron dynamics in molecular 

systems in “Advances in Atomic, Molecular and Optical Physics”, 72, Elsevier, 183 (2023)]

☼ We need compact plasma-based FELs for university-based facilities – 

Complements HHG-based sources & Essential in the water window for studying 

biomolecules. 

☼ End-stations: detection of photons & electrons; coincidence detection with 

COLTRIMS.



Thank you 

for your attention!
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