

Solid targets fabrication and challenges at ELI-NP

Stefania Ionescu, on behalf of Target Laboratory team, ELI-NP, Magurele, Romania

Frascati, 4-6th of December, 2024

Helios 5 PFIB CXe

Content

ELI-NP & Target Laboratory Overview

Capabilities and equipment

Research directions

ELI-NP (Extreme Light Infrastructure-Nuclear Physics)

ELI-NP SCOPE

- ➢ Fundamental Research (exotic nuclei and photo-fission; vacuum properties and particle creation; nuclear structure and astrophysics studies)
- ➢ Applied Research (materials for space science; management of nuclear materials; industrial tomography; brilliant positron source; radioisotopes for medical applications)

Brilliant energy tunable gamma-ray beam system (under construction)

ELI-NP Target Laboratory

- Provide targets in-house manufacturing and characterization
- Perform $R&D$ activities of new target designs with improved performances and materials science

Polishing machine

Tube oven

UHV e-beam deposition

Plasma cleaner

https://www.eli-np.ro/target_lab.php

X-ray diffractometer

Overview of the ELI-NP

Target Laboratory

Reactive Ion Etching

Optical

lithography

Atomic force

microscope

HV sputtering deposition

Team:

Mills, lathes

Electrochemical setup

profilometer

Scanning Electron Microscope

Fumehoods

- Dr. Victor Leca- head
- Dr. Cristina Gheorghiu
- Dr. Karolina Horna
- Dr. Cosmin Jalba
- Eng. Iulia Zai
- Eng. Stefania Ionescu
- Eng. Andrei Giulesteanu

Acknowledgements:

Prof. Sydney Gales

ELI-NP Acquisition Dep.

- Tech. Daniel Popa
- Tech. Adrian Vatcu

 2 utting

machine

Types of targets:

solid (thin/thick/ultra-thin films, multi-layer, foams, nanospheres, snow clusters, NWs, gratings, nanoparticle, micro-cone...)

cryogenic

gas jet

liquid crystals

Total surface area 350 m^2 ISO 7 and ISO 6 cleanliness 4 designated rooms: micro/ nanofabrication, characterization, chemistry room, micromachining Prof. Calin Ur Dr. Daniel Ursescu Dr. Dan Ghita Prof. Razvan Stefan Eng. Bogdan Tatulea Acc. Alexandru Popescu

Deposition techniques **Structuring techniques** Structuring techniques

UHV e-beam evaporation

UHV RF/DC sputtering

metals

Fabrication capabilities

- nitrides
- oxides

Optical / e- beam lithography

Reactive ion etching

Characterization capabilities

Chemistry laboratory

Micro-mechanical and other equipment

- Plasma (O_2, Ar, SF_6)
- Ion beam (Ar)
- Thermal treatments

Current requirements and proposed strategies

Targets requirements for high power laser experiments:

- Thin metallic films (gold, aluminium) **for commissioning and RIT/ RPA/ TNSA studies**
- Thick (commercial) metallic, or multilayer films **for TNSA acceleration**
	- Dense \triangleright Graphene (d = 2.267 g/cm³)
		- \triangleright Diamond-like carbon (DLC) (d = 2.5 3 g/cm³)
	- for carbon ions acceleration **for medical projects**

H. Daido et al, Rep. Prog. Phys., 2012

- \mathbf{r} Boron (boron thick films, boron nanoparticles and nanostructures) **for proton-boron fusion experiments**
- Structured targets (gratings, nanodots, nanospheres, nanowires, nanotubes, etc.) **for enhanced laser-matter interaction**
- Future developments: high repetition rate targets

Carbon

Near critical density

➢ Carbon foams

➢ Carbon nanotubes (CNTs)

AR coating ω 515 nm

(substrate)

Freestanding metallic targets

- for 1 PW laser experiments – commissioning | to improve ion acceleration, high Z ions *(LDED collab: D.Doria, P.Ghenuche, M.Cernaianu)*

Targets on support

radiobiological applications

• **Multicomponent solid targets for spatial/**

• **Nanoscale control of structure and composition of thin films**

Oblique angle deposition technique gives: *(limited surface diffusion, and with atomic-scale ballistic shadowing)*

• Controlled surface morphology and topography

Materials, 6134 (15) (2022)

• **Multilayered targets**

(ELI-Beamlines collab – for X-Ray generation)

Research done by: Cristina Gheorghiu, Victor Leca

Boron target fabrication for proton-boron fusion

Regarding further work, next directions are of interest:

- ➢ Boron films by RF Sputtering (Top-Down method)
- ➢ Finding the best solution for B nanoparticles dispersion
- ➢ Target testing in high power laser experiments
- ➢ Applications to Fusion Energy
- ➢ Applications to Medical Radioisotopes

Commercial foam targets and carbon targets directions

Solid targets for the 2024 May 10 PW experimental campaign:

- ➢ Commercial foams (General Atomics, RAL):
- \checkmark CH, SiO2, 6 50 mg/cc: - on plastic washer
	- on metallic washer
	- with foil as support

 CH *foam on Ni foil*

Carbon targets strategies (under development):

➢ Graphene by CVD growth and transfer

on substrates with holes

 \triangleright DLC (diamond like carbon) by pulsed laser deposition

 \triangleright Carbon foams by chemical methods and supercritical drying/ freeze drying

Research done by: Andrei Giulesteanu, Cosmin Jalba, Karolina Horna, Cristina Gheorghiu

Microstructured targets - bigger surface area

• **Surface film nanopatterning**

Suitable for high repetition rate applications. Fabricated by means of:

- electron beam lithography (EBL)
- reactive ion etching (RIE)
- optical lithography
- Ar ion milling

metallic triangle array nanostructures

nano-rods

metallic (Au, Cr) nano-dots

C. Gheorghiu et al., Frontiers in Physics, 9, 727498 (2021)

• **Periodic gratings on Au and Cu foils (3 μm, 10 μm)**

- for ion acceleration experiments, High Harmonic Generation and X-ray generation *(collab. Laser and Plasma Physics Institute/Duesseldorf)*

Enhanced laser energy absorption, higher efficiency in accelerating charge particle beams (compared to planar foils)

C. Gheorghiu et al., High Power Laser Science and Engineering 10 (2021)

¹⁰

Nanostructures: Metallic Nanowires and Nanotubes

• **Laser experiments** target ➢ Gemini 2023/2024 Laser set-up and properties: 65° DPM, 50fs pulse duration; 2um FWHM focal spot, ~7J on target; • Diagnostics: RCF, TP, ToF, detector CsI, X-ray pin-hole camera; \triangleright ELI-NP E5 1PW 2024 camera • Experimental Set-up: 14J on target, 28fs, 4 µm focal spot, 15deg, single plasma mirror chamber • **PIC simulations** In collaboration with theory and simulation group (a) 0.5 $J_x\rm{(MA}/\mu m}^2$ $y~(\mu\mathrm{m})$ 0.0 0.0 -0.2 -0.5 -0.4 $\overline{2}$ \mathcal{R} $x \ (\mu m)$ Ong, J.F., et. al,PRR 3, 2021 0^{23} W cm⁻² at $t = -24$, -17 , 2, 18, and 100 fs. The peak of the laser pulse reaches the tip of the nanowire at $t = 0$, indicated by the
habed line. The laser pulse is propagaing in the +y direction. The RT regime l Density: 0.9-2.8 g/cm³ Ong, J.F., et. al,PRE 107, 2023

 Laser ----7J, 50fs 3x4 CsI scintillators (each 5x5x50mm³)

• Diagnostics: TP, RCF, CsI, bubble detectors, ionization

Materials science – structural defects and structure simulations

• **Threading dislocations studies with XRD**

(Faculty of Physics, Univ. Politehnica collab)

TEM - high quality of AlN buffer layer and GaN layer

• **Metallic hydrides: Ab initio & DFT calculations**

(Faculty of Physics collab: Conf. Alex. Nemnes, Prof. Lucian Ion)

Aim:

- *find stable structures of metallic hydrides which can be stabilized/grown as thin films, for fabrication of metallic hydrides films*
- *obtain stability conditions and structural investigations for metallic films, as a function of pressure*

Programs: **SIESTA → CALYPSO → ELK**

- 1. CALYPSO Code \rightarrow identify most promising hydrides structures
- crystal structure prediction using evolutive algorithms (PSO)
- the resulted structures found with CALYPSO are then relaxed with SIESTA to find the optimal, stable structure
- the atomic coordinates found after relaxation will be used in ELK
- 2. SIESTA Code \rightarrow structural optimization
- 3. ELK Code \rightarrow material physical properties

Nanomaterials, 11(5) (2021); Nanomaterials, 10, 197 (2020) Materials 12, 4205 (2020) Research done by: Iulia Zai, Victor Leca

Conclusions and perspectives

- \triangleright In targets fabrication process undestanding of the materials properties is critical for developing targets with desired characteristics;
- ➢This requires ongoing materials science studies for target development;
- ➢Exploration of new methods for fabrication of nanostructured targets in order to widen their parameters range;
- ➢Need for high rep targets;
- ➢On the metallic hydrides:
	- ➢improving DFT simulation parameters for yielding new stable structures
	- ➢Improving the experimental methods that will allow for better stabilization of hydrides that can be applied also to new systems, such as LuHN

Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II

Thank you for your attention! $\mathbb{D} \in \mathbb{N}$ nuclear physics **EEEE** P **victor.leca@eli-np.ro**

https://www.eli-np.ro/target_lab.php stefania.ionescu@eli-np.ro We welcome any collab.

stefania.ionescu@eli-np.ro