

Fundamental research and applications with the EuPRAXIA facility at LNF

Instrumentation for nuclear physics experiments: Silicon Carbide detectors

S. Tudisco

INFN - Laboratori Nazionali del Sud

On behalf of SiCILIA collaboration

INFN-LNF Frascati, Roma, Italy, December 4-6, 2024

Fundamental research and applications with the **EuPRAXIA** facility at LNF

Outline

PRAXIA

- Why Silicon Carbide for radiation detection \checkmark
- INFN activity on SiC detectors: SiCILIA \checkmark
- Main SiCILIA results \checkmark
- **Devices performance overview** \checkmark
- ✓ R&D of new set-up
- \checkmark Perspectives for new devices

Why Silicon Carbide for radiation detection

Property	Si	Diamond	Diamond	4H SiC
Material	MCz, FZ, epi	Polycrystal	single crystal	epitaxial /
Eg [eV]	1.12	5.5	5.5	3.3
E _{breakdown} [V/cm]	3·10 ⁵	10 ⁷	10 ⁷	2.2·10 ⁶
μ _e [cm²/Vs]	1450	1800	>1800	800
$\mu_h [cm^2/Vs]$	450	1200	>1200	115
v _{sat} [cm/s]	0.8·10 ⁷	2.2·10 ⁷	2.2.10 ⁷	2·10 ⁷
Z	14	6	6	14/6
٤ _r	11.9	5.7	5.7	9.7
e-h energy [eV]	3.6	13	13	7.6
Density [g/cm3]	2.33	3.515	3.515	3.22
Displacem. [eV]	13-20	43	43	25
e-h/µm for mips	~80	36	36	55

Applications

- UV Soft-X detection
- Charged Particle detection and identification
- Neutron detection

- Wide band-gap (3.3 eV)
 - Low Leakage current
- ⇒ Insensitivity to the electromagnetic radiation in the visible range
 - High Breakdown
- ⇒ Electrically robust devices
- ⇒ Radiations hardness
- Different e-h mobility
 - ⇒ Charge Identification pulse shape analysis
 - Fast devices
 - \Rightarrow Timing applications
- Higher displacement threshold
 - ⇒ <u>Radiation hardness</u> more than Silicon
- Signals amplitude

1

- ⇒ Less charge than Si, SiC≈Si/2
- \Rightarrow A problem for MIP!
- \Rightarrow No problem in all other case

Rad Hard devices!

INFN R&D on SiC detectors

2017 - INFN call CSN5 - SiCILIA

Silicon Carbide Detectors for Intense Luminosity Investigations and Applications

SiC

Fondazione Bruno Kessler (FBK) – Trento

SiCILIA results: Epitaxial growths

S. Tudisco - Fundamental research and applications @EuPRAXIA

S. Tudisco et al. SENSORS Vol. 18 (2018) 2289

SiCILIA results: Epitaxial growths

S. Tudisco - Fundamental research and applications @EuPRAXIA

S. Tudisco et al. SENSORS Vol. 18 (2018) 2289

SiCILIA results: Processing

S. Tudisco – Fundamental research and applications @EuPRAXIA

S. Tudisco et al. SENSORS Vol. 18 (2018) 2289

Performance overview: SiC-Timing

- Beam ⁵⁸Ni @ 60MeV, 70MeV
- Digitazer CAEN DT5751
- START: μCP, STOP: Si Hamamatsu o SiC STM

New beam test are in preparation

S. Tudisco - Fundamental research and applications @EuPRAXIA

C. Ciampi et al. NIMA 925 (2019) 60-69

Performance overview : X-Ray detection

Beam Position Monitor (XBPM) **1,2,3,4,5** Transparency Extreme radiation hardness Fast response

SiC 100 μm

Synchrotrons radiation

X-ray beam 10x10 µm², 5E10 ph/sec @ 12.4keV

Performance overview: Radiation Hardness

Energy spectra NFN SiC Silicon pristine pristine 10⁻¹ 10⁻¹ 10⁸ O/cm² -10^8 O/cm^2 10⁹ O/cm² 10⁹ O/cm² 10¹⁰ O/cm² - 10¹⁰ O/cm² 10¹¹ O/cm² a.u. л. 10^{−2} 10-2 Beam stopped inside detector 10^{_3 ∟}... 19 22 23 24 Energy [MeV] 11 12 13 Energy [MeV] 8 9 10 14 15 16 20 21 25 26 27

Performance overview : Radiation Hardness

LINAC @ UniMe Electrons irradiation - Energy 5 MeV - Current 1-200 mA

- Rep. Rate 1-300 Hz
- Pulse duration 3 µsec

Electrons Beam Monitor

Performance overview : ToF mesurements on Laser facility

PALS facility (Prague, CZ)

ToF - Spectrum

INFN

New set-up: NUMEM @ INFN-LNS

NUclear Matrix Elements of Neutrinoless Double Beta

New set-up : FRAISE @ INFN-LNS

Most of the produced beams will be «cocktail» and need event by event identification through the measurement of time of flight and energy loss

New fragment separator

The new tagging device must be fast & radiation tolerant, therefore SiC was chosen as

Will provide fragmetation beams with very high intensity (up to 10⁷ p/s for ions like ¹⁶C)

One of the studied configuration foresees the use an array of pads of 5 mmx 5mm able to cover a surface up to 6 cmx 5cm

Sic New set-up: PRAGUE - Particle RAnGe measure Using Silicon CarbidE

Perspectives for new devices

Monolithic Structure SiC Buried anode

PNRR - SAMOTHRACE R&D on Medical devices

SiciliAn MicrOnanoTecH Research And Innovation CEnter

Thanks for your attention !

