

Overview on tests and applications of strong-field QED with multi PW lasers

Antonino Di Piazza

Workshop on "Fundamental research and applications with the EuPRAXIA facility at LNF" Frascati, December 05, 2024

Outline

- The electromagnetic interaction
- The quantum vacuum and the critical fields of QED
- Strong-field QED in an intense laser field
- Radiation reaction in a nutshell
- Vacuum-polarization effects in a nutshell
- Flying-focus beams: a new tool to study strong-field QED
- The multipetawatt laser facility NSF OPAL
- Conclusions
- Reviews on strong-field QED:
 - 1. A. Di Piazza et al., Rev. Mod. Phys. 84, 1177 (2012)
 - 2. B. King and T. Heinzl, High Power Laser Sci. Eng. 4, e5 (2016)
 - 3. T. G. Blackburn, Rev. Mod. Plasma Phys. 4, 5 (2020)
 - 4. F. Karbstein, Particles **3**, 39 (2020)
 - 5. A. Gonoskov et al., Rev. Mod. Phys. 94, 045001 (2022)
 - 6. A. M. Fedotov et al., Phys. Rep. 1010, 1 (2023)

The electromagnetic interaction

- Quantum electrodynamics (QED) is the relativistic quantum theory describing the interaction among electric charges
- By considering the lightest electric charges, electrons and positrons, the basic scales of QED are obtained by combining the electron charge e and mass m, together with c and \hbar :

Strength:	Energy:		
$lpha{=}e^2/4\pi\epsilon_0\hbar c{=}7.3{ imes}10^{-3}$	$mc^2=0.51~{ m MeV}$		
(Fine-structure constant)	(Electron rest energy)		
Length:	Electromagnetic field:		
$\lambda_{C}{=}\hbar/mc{=}3.9{ imes}10^{-11}{ m cm}$	$E_{cr} = m^2 c^3 / \hbar e = 1.3 \times 10^{16} \text{ V/cm}$		
(Compton wavelength)	$B_{cr} = m^2 c^3 / \hbar e = 4.4 \times 10^{13} { m G}$		
	(Critical fields of QED)		

• Critical laser intensity of QED:

$$I_{cr} = cE_{cr}^2 = 4.6 \times 10^{29} \text{ W/cm}^2$$

World-record intensity: 10^{23} W/cm² (Yoon et al. 2021)

The quantum vacuum and the critical fields of QED

- The vacuum state is the lowest-energy state of the theory, where no particles are present
- In quantum field theory
 - "Fluctuations" of particles-antiparticles are present in the vacuum
 - They cover a very short distance and annihilate again after a very short time (in the case of electrons and positrons $\lambda_C = \hbar/mc {\sim} 10^{-11}$ cm and $\tau_C {=} \lambda_C/c {=} \hbar/mc^2 {\sim} 10^{-21}$ s, respectively)

• Physical meaning of the critical fields:

$$|e|E_{cr} \times \frac{\hbar}{mc} = mc^2$$

- Vacuum instability and electromagnetic cascades (Bell et al., PRL 2008, Bulanov et al., PRL 2010, Fedotov et al., PRL 2010)
- The interaction energy of a Bohr magneton with a magnetic field of the order of B_{cr} is of the order of the electron rest energy
- In the presence of background electromagnetic fields of the order of the critical ones a new regime of QED, the strong-field QED regime, opens:
 - 1. where the properties of the vacuum are substantially altered by the fields
 - 2. where a tight interplay unavoidably exists between collective (plasma-like) and quantum effects
 - 3. which is unaccessible to conventional accelerators because it requires coherent fields

Strong-field QED in an intense laser field

• An electron with energy ε collides head-on with a plane wave with amplitude E_L and angular frequency ω_L (wavelength λ_L)

Optical laser technology

Optical laser technology $(\hbar\omega_L \sim 1 \text{ eV}, \lambda_L \sim 1 \mu \text{m})$	$\begin{array}{c} Energy \\ (\mathrm{J}) \end{array}$	Pulse duration (fs)	$\begin{array}{c} Spot \ radius \\ (\mu\mathrm{m}) \end{array}$	$\frac{\text{Intensity}}{(W/cm^2)}$
Experiments (Astra Gemini, CoReLS)	10	40	2.5	4×10^{20}
Facilities (APOLLON, ELI Beamlines, ELI-NP, ZEUS etc)	10÷100	10÷20	1	$10^{21} \div 10^{22}$
Record intensity (CoReLS, 2021)	50	20	1.1	1.1×10^{23}
Future projects (NSF OPAL)	2×500	20	1.3	5×10^{23}

Electron accelerator technology

Electron accelerator technology	$\begin{array}{c} {\sf Energy} \\ ({\rm GeV}) \end{array}$	$\begin{array}{c} \text{Beam} \\ \text{duration} \ (\text{fs}) \end{array}$	$\begin{array}{c} Spot\ radius\\ (\mu\mathrm{m}) \end{array}$	Number of electrons
Conventional accelerators (SLAC)	50	3×10^{3}	1	4×10^{10}
Laser-plasma accelerators (LBNL)	7.8	35	40	3×10^{7}

Message: Present technology allows for the experimental investigation of strong-field QED

$$\xi = 7.5 \frac{\sqrt{I_L [10^{20} \text{ W/cm}^2]}}{\hbar \omega_L [\text{eV}]}$$
$$\chi = 5.9 \times 10^{-2} \,\varepsilon [\text{GeV}] \sqrt{I_L [10^{20} \text{ W/cm}^2]}$$

Radiation reaction in a nutshell Units with $\epsilon_0 = \hbar = c = 1$

- Accelerated electric charges emit electromagnetic radiation (relativistic Larmor formula, s is the electron's $\frac{d\mathcal{E}}{dt} = -\frac{2}{3}\frac{e^2}{4\pi}\frac{du^{\mu}}{ds}\frac{du_{\mu}}{ds}$
- The exact dynamics of the electron in an external field includes the effects of this energy loss (and of the related momentum loss)
- By adding an extra force to the Lorentz equation due to the field produced by the electron itself, one can obtain the Lorentz- $m\frac{du^{\mu}}{ds} = eF^{\mu\nu}u_{\nu} + \frac{2}{3}\frac{e^2}{4\pi}\left(\frac{d^2u^{\mu}}{ds^2} + \frac{du^{\nu}}{ds}\frac{du_{\nu}}{ds}u^{\mu}\right)$ Abraham-Dirac (LAD) equation
- The LAD equations features physical inconsistencies (runaway solutions, violation of causality) essentially due to the Schott term
- Landau and Lifshitz noticed that within classical electrodynamics a "reduction of order" can be $\frac{du^{\mu}}{ds} \approx \frac{e}{m} F^{\mu\nu} u_{\nu} \text{ in } \frac{2}{3} \frac{e^2}{4\pi} \left(\frac{d^2 u^{\mu}}{ds^2} + \frac{du^{\nu}}{ds} \frac{du_{\nu}}{ds} u^{\mu} \right)$ carried out:
- One obtains the Landau-Lifshitz (LL) equation

$$m\frac{du^{\mu}}{ds} = eF^{\mu\nu}u_{\nu} + \frac{2}{3}\frac{e^2}{4\pi} \left[\frac{e}{m}(\partial_{\alpha}F^{\mu\nu})u^{\alpha}u_{\nu} - \frac{e^2}{m^2}F^{\mu\nu}F_{\alpha\nu}u^{\alpha} + \frac{e^2}{m^2}(F^{\alpha\nu}u_{\nu})(F_{\alpha\lambda}u^{\lambda})u^{\mu}\right]$$

• Experiments on radiation reaction in intense laser fields: Cole et al., 2018, Poder et al., 2018, Los et al., 2024

Vacuum-polarization effects in a nutshell

- Due to the presence of the virtual electronpositron pairs, the vacuum according to QED behaves as a birefringent medium
- Dichroic/absorptive effects come into play when pair production becomes sizable
- For fields with wavelengths much larger than the $\lambda_C pprox 3.9 imes 10^{-7}$ $\mu {
 m m}$, vacuum-polarization effects are local
- They can be described as if the vacuum features two refractive indexes depending on the mutual polarization of polarizing and probe fields
- Examples of vacuum refractive indexes $\mathcal{E} = \mathbf{E} (\mathbf{n} \cdot \mathbf{E})\mathbf{E} + \mathbf{n} \times \mathbf{B}$ for a background electromagnetic field $n_{\mathcal{E}} = 1 + \frac{4\alpha}{90\pi} \frac{(n \times E)^2 + (n \times B)^2 - 2n \cdot (E \times B)}{I_{cr}}$ (E, B) and a probe propagating along the direction n and polarized either along ${\cal E}$ or along ${\cal B}$ $(I_{cr} \sim 10^{29} \ {
 m W/cm^2})$

 $\boldsymbol{\mathcal{B}} = \boldsymbol{B} - (\boldsymbol{n} \cdot \boldsymbol{B})\boldsymbol{B} - \boldsymbol{n} \times \boldsymbol{E}$ $7\alpha \ (\boldsymbol{n} \times \boldsymbol{E})^2 + (\boldsymbol{n} \times \boldsymbol{B})^2 - 2\boldsymbol{n} \cdot (\boldsymbol{E} \times \boldsymbol{B})$ $n_{\mathcal{B}} = 1 +$ 90π $I_{\rm cr}$

A limitation of Gaussian beams for SFQED

- The expressions of the classical and quantum nonlinearity parameters show that $\xi = \frac{1}{2\pi} \frac{|e|E_L\lambda_L}{mc^2} = \frac{|e|E_L\lambda_C}{\hbar\omega_L}$ strong-field QED effects benefit from high $\chi = \frac{E_L}{E_{cr}}\Big|_{rest frame} \approx \frac{2\varepsilon}{mc^2} \frac{E_L}{E_{cr}}$ laser intensities
- Interesting effects, like radiation reaction and vacuum birefringence, also depend on how long particles experience strong fields
- Gaussian laser beams feature an intrinsic limitation: at a given power, the more one focuses the beam to increase the intensity, the shorter becomes the longitudinal region where the field is strong

Flying-focus beams

 One can overcome the limitation of a Gaussian beam and control the focal position by using, e.g., a chirped pulse (the frequency content of the pulse depends on time) and a chromatic lens (different frequencies are focused at different points)

- The velocity of such a "flying-focus" pulse can be controlled, can be either positive or negative and the case $v_f \approx -1$ was demonstrated experimentally
- To sustain the pulse over a long length high energies are required

- The idea of using a flying-focus pulse with focus moving at the speed of light in the opposite direction of the phase velocity can be exploited in different contexts
- Classical radiation reaction sizable at relatively low laser powers (Formanek et al. PRA 2022)
- Energy loss due to radiation reaction: $\varepsilon(t) \approx \frac{\varepsilon_0}{1 + \frac{4\varepsilon_0}{3m} r_e \omega_0^2 \int_0^t g^2(t') \xi^2(t') dt'} = \frac{\varepsilon_0}{1 + \kappa(t)}$
- The energy loss depends on the laser energy per unit surface ($\kappa(t) \sim \xi_0^2 t$)
- A flying-focus allows for the same energy losses than a Gaussian beam but at much lower power
- Numerical results for $t_{
 m int} = 100 \
 m ps$ (corresponding to \sim 60,000 oscillations)
- Similar conclusions hold for vacuum-polarization effects

NSF OPAL: a laser design project funded by NSF and guided by the most pressing scientific questions in the four research areas

Alpha 1-2 (ω=1.4 eV): 500 J in 20 fs Beta (ω=1.4 eV): < 50 J in 20 fs

target areas

The two buildings would house NSF OPAL, plus labs and offices for new research

Laser-driven

Ion Acceleration

New

Office/Lab

Expansion

(OLE)

Conclusions

- Modern lasers offer a unique possibility to access new extreme regimes of interaction of light with matter and can be used as a new tool, alternative to conventional accelerators, for investigating fundamental physics and quantum electrodynamics in still uncharted regimes
- Flying-focus beams are laser beams where the focus moves with controllable velocity
- We have proposed to exploit the unique properties of flying-focus beams as a tool to test strong-field effects like radiation-reaction and vacuum-polarization effects under controlled conditions at relatively low laser powers/intensities
- NSF has awarded funding to design NSF OPAL: a two, 25-PW laser system at the LLE for investigating plasma physics, nuclear physics, strong-field QED etc...

A post-doc position is available in my group at the University of Rochester starting at any time

If you are interested, please contact me at a.dipiazza@rochester.edu