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The electromagnetic interaction

Strength:

=e2/40}c=7.3£10{3

(Fine-structure constant)

Energy:

mc2=0.51 MeV

(Electron rest energy)

Length:

C=}/mc=3.9£10{11 cm

(Compton wavelength)

Electromagnetic field:

Ecr=m
2c3/}jej=1.3£1016 V/cm

Bcr=m
2c3/}jej=4.4£1013 G

(Critical fields of QED)

• Quantum electrodynamics (QED) is the relativistic quantum

theory describing the interaction among electric charges

• By considering the lightest electric charges, electrons and

positrons, the basic scales of QED are obtained by combining
the electron charge e and mass m, together with c and }:

World-record intensity: 1023 W/cm2 (Yoon et al. 2021)

• Critical laser intensity of QED:



• In quantum field theory
– “Fluctuations” of particles-antiparticles

are present in the vacuum

– They cover a very short distance and
annihilate again after a very short time
(in the case of electrons and positrons
C=}/mc»10{11 cm and C=C/c=
}/mc2»10{21 s, respectively)
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• The vacuum state is the lowest-energy state of the theory,
where no particles are present

The quantum vacuum and the critical fields of QED



• Physical meaning of the critical fields:

C

C

• In the presence of background electromagnetic fields of the order of
the critical ones a new regime of QED, the strong-field QED
regime, opens:

1. where the properties of the vacuum are substantially altered by
the fields

2. where a tight interplay unavoidably exists between collective
(plasma-like) and quantum effects

3. which is unaccessible to conventional accelerators because it
requires coherent fields

• The interaction energy of a Bohr magneton with a magnetic field of
the order of Bcr is of the order of the electron rest energy

• Vacuum instability and electromagnetic cascades (Bell et al., PRL
2008, Bulanov et al., PRL 2010, Fedotov et al., PRL 2010)



Relativistic e®ects

Multiphoton e®ects

Quantum e®ects

(photon recoil,

pair production)

• An electron with energy " collides head-on with a plane wave

with amplitude EL and angular frequency !L (wavelength L)

Strong-field QED in an intense laser ¯eld
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• The physical observables
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Lorentz- and gauge-

invariant parameters
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Optical laser technology

Optical laser technology 

(}!L»1 eV, L»1 m)
Energy

(J)

Pulse 

duration 

(fs)

Spot radius

(m)

Intensity

(W/cm2)

Experiments (Astra Gemini, CoReLS) 10 40 2.5 4£1020

Facilities (APOLLON, ELI Beamlines, 

ELI-NP, ZEUS etc…)
10¥100 10¥20 1 1021¥1022

Record intensity (CoReLS, 2021) 50 20 1.1 1.1£1023

Future projects (NSF OPAL) 2£500 20 1.3 5£1023

Electron accelerator technology

Electron accelerator technology
Energy

(GeV)

Beam 

duration (fs)

Spot radius

(m)

Number of 

electrons

Conventional accelerators (SLAC) 50 3£103
1 4£1010

Laser-plasma accelerators (LBNL) 7.8 35 40 3£107

Message: Present technology allows for

the experimental investigation of

strong-¯eld QED



• The exact dynamics of the electron in an external field includes the

effects of this energy loss (and of the related momentum loss)

• By adding an extra force to the Lorentz equation due to the field

produced by the electron itself,

one can obtain the Lorentz-

Abraham-Dirac (LAD) equation

• The LAD equations features physical inconsistencies (runaway

solutions, violation of causality) essentially due to the Schott term

Radiation reaction in a nutshell
• Accelerated electric charges emit electromagnetic radiation

“reduction of order” can be
carried out: in

• One obtains the Landau-Lifshitz (LL) equation

• Experiments on radiation reaction in intense laser fields: Cole et al.,
2018, Poder et al., 2018, Los et al., 2024

(relativistic Larmor formula, s is the electron’s

proper time)

Units with 0=}=c=1

• Landau and Lifshitz noticed that within classical electrodynamics a



Vacuum-polarization effects in a nutshell

• Due to the presence of the virtual electron-

positron pairs, the vacuum according to QED

behaves as a birefringent medium

• Dichroic/absorptive effects come into play

when pair production becomes sizable

• For fields with wavelengths much
larger than the C ¼ 3.9£10{7 m,

vacuum-polarization effects are local

• They can be described as if the vacuum

features two refractive indexes

depending on the mutual polarization

of polarizing and probe fields

"

.

"

.

• Examples of vacuum refractive indexes

for a background electromagnetic field

(E, B) and a probe propagating along

the direction n and polarized either
along E or along B (Icr» 1029 W/cm2)



• The expressions of the classical and

quantum nonlinearity parameters show that

strong-field QED effects benefit from high

laser intensities

• Interesting effects, like radiation reaction and vacuum birefringence,

also depend on how long particles experience strong fields

• Gaussian laser beams feature an intrinsic limitation: at a given

power, the more one focuses the beam to increase the intensity, the

shorter becomes the longitudinal region where the field is strong

A limitation of Gaussian beams for SFQED



• The velocity of such a “flying-focus” pulse can

be controlled, can be either positive or negative
and the case vf ¼ { 1 was demonstrated

experimentally

• To sustain the pulse over a long length high

energies are required

Flying-focus beams
• One can overcome the limitation of a Gaussian

beam and control the focal position by using, e.g., a

chirped pulse (the frequency content of the pulse

depends on time) and a chromatic lens (different

frequencies are focused at different points)
Saint-Marie et al., 2017 (theory) and Froula

et al., 2018 (theory and experiment)



• The idea of using a flying-focus pulse

with focus moving at the speed of light

in the opposite direction of the phase

velocity can be exploited in different

contexts

• Classical radiation reaction sizable at

relatively low laser powers (Formanek

et al. PRA 2022)

• Energy loss due to radiation reaction:

• The energy loss depends on the laser
energy per unit surface (() » 0

2 )

• A flying-focus allows for the same

energy losses than a Gaussian beam but

at much lower power
• Numerical results for int = 100 ps

(corresponding to » 60,000 oscillations)

180 J

• Similar conclusions hold for vacuum-polarization effects
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Conclusions

• Modern lasers offer a unique possibility to access new extreme

regimes of interaction of light with matter and can be used as a

new tool, alternative to conventional accelerators, for

investigating fundamental physics and quantum electrodynamics

in still uncharted regimes

• Flying-focus beams are laser beams where the focus moves with

controllable velocity

• We have proposed to exploit the unique properties of flying-focus

beams as a tool to test strong-field effects like radiation-reaction

and vacuum-polarization effects under controlled conditions at

relatively low laser powers/intensities

• NSF has awarded funding to design NSF OPAL: a two, 25-PW

laser system at the LLE for investigating plasma physics, nuclear

physics, strong-field QED etc...
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