Fundamental research and applications with the EuPRAXIA facility at LNF December 4th 2024

EuPRAXIA@SPARC_LAB FELs

Michele Opromolla (INFN-LNF)

on behalf of the EuPRAXIA@SPARC_LAB WA6 collabotion team

L.Giannessi, F.Nguyen, A.Petralia, V.Petrillo, L.Sabbatini, A.Selce, A.Vannozzi, F.Villa, C.Boffo, I.Balossino, M.Del Franco, M.Galletti, A.Giribono, A.Ghigo, A.Iovine, N.Mirian, C.Vaccarezza

EuPRAXIA@SPARC_LAB Machine layout

Outline

• AQUA

- Undulator magnetic design
- FEL tuning range
- Expected radiation performances
- Foreseen photon Diagnostics and Beamline

• ARIA

- Undulator line
- FEL tuning range and properties
- Expected radiation performances
- Foreseen photon Beamline

• Summary

AQUA undulator

a) Apple-X undulator: increased PM field through "geometry", selectable polarization

b) Superconducting undulator collaboration agreement with FNAL for NbTi planar prototype

- Target wavelength 3-4 nm @ 1 GeV: relatively short period required (12-20 mm)
- Total available length ~ 25-30 m, depending on linac spreader system, matching section, beam diagnostics and main beam dump.
- ✓ Total **undulator magnetic length: 20 m**, 10 modules

Period length: 18 mm sufficient tuning range at fixed energy reach carbon /nitrogen K-edge

Polarization : variable fits with the requests from the scientific case

✓ Type: Apple-X

substantially higher field extended tuning range

 K_{max} independent of polarization \rightarrow fully symmetric

Experience from the SABINA Undulator @LNF (KYMA)

Apple-X undulator modeling and design

Modeling parameters Remanent field Br = 1.35 T
Undulator period λ_u = 18 mm
Material NdFeB
4 blocks / period
of periods (eff.) N = 110
L_{und}= 1990.4 mm (10 modules)

Pipe ext. diam. (mm)	5.6
Pipe inner diam. (mm)	5.0
Wedge cut (mm)	2.8
φ aperture (mm)	6.0
B _{max} (T) in LP	0.935
K _{max} in LP	1.572
K _{rms} (max=a _w in CP)	1.111
max λ_0 (nm) @ 1 GeV	5.25

Interplay among aperture, magnetic strength, wavelength tunability and inner diameter constrained by wakefield effects on FEL performance

Electron beam parameter acceptance analysis

The undulator is engineered to amplify radiation at 4 nm from a suitable beam.

Required e-beam properties from a modified Ming-Xie model analysing the FEL performance vs. the e-beam emittance and energy spread.

This analysis assumes:

- a Gaussian beam (in current, energy, energy spread, transverse momenta and spatial distributions)
- duration 5 fs, peak current 1.5 kA, average beta functions $\beta_x = \beta_y = 10$ m, emittances $\varepsilon_x = \varepsilon_y$

The most efficient FEL operation in both linear and circular polarization can be achieved for:

□ Transverse slice emittances $\epsilon_{x,y} \le 0.6 - 0.8 \text{ mm} \text{ mrad}$ □ Relative slice energy spread $\Delta E/E \le 3 \times 10^{-4}$

FEL tuning range – linear polarization

FEL tuning range – circular polarization

Thanks to its symmetry, the Apple-X undulator provides the same Krms in both linear and circular polarizations

Wider undulator gap tunability in Circular Polarization \rightarrow "water window" wavelengths probed with higher N_y yield

By increasing beam energy (other parameters constant) → saturation length below 20 m, most of the available spectrum; chance to reach for 3nm

Expected electron beam and AQUA FEL performances

Desired/foreseen average e-beam parameters from PWFA

Simulated **Parameter** Unit Range 1-1.2 Energy GeV 1 25 Charge 25-50 pC **Rms Bunch length** 2-4 2 μm Peak current kΑ 1.5-3 1.5 0.6-0.8 Slice emitX,Y 0.7 mm mrad Slice rel. energy spread ‰ 0.2-0.3 0.3

AQUA FEL theoretical performances

working point	LP K_{max}	LP 4nm	$CP K_{max}$	CP 4nm
resonant λ [nm]	5.75	4.01	5.75	4.01
photon energy [eV]	215	309	215	309
matching $\langle \beta \rangle$ [m]	6	8	6	8
Pierce $\rho_{1D} \ [10^{-3}]$	1.81	1.35	2.04	1.46
gain length _{1D} [m]	0.559	0.788	0.405	0.566
satur. length [m]	16.78	23.40	14.33	20.81
satur. $\langle power \rangle$ [GW]	0.394	0.236	0.486	0.277
exit E_{pulse} [µJ]	23.90	11.56	32.95	13.73
exit bandwidth [%]	0.154	0.088	0.223	0.117
exit pulse length _{RMS} [fs]	6.10	3.50	6.12	3.76
exit divergence [mrad]	0.032	0.023	0.031	0.022
exit trans. size $[\mu m]$	195	133	190	132
exit N_{γ} /pulse $[10^{11}]$	6.93	2.33	9.53	2.77

On average, photon briliiance of about 10^{29} - 10^{30} ph/s/mm²/mrad²/0.1% BW

AQUA FEL performances

FEL performance in CP: ideal case of the Tested beam with Gaussian current profile

Average pulse properties at the undulator exit

<energy> (µJ)</energy>	λ (nm)	<bw> (%)</bw>	<photon number></photon 	<size> (μm)</size>	<div.> (µrad)</div.>	L _{sat} (m)	$<\!\!L_{rad}^{FWHM}\!>$ (fs)
17	4	0.3	3.4×10^{11}	90	100	22	15

Sources of FEL	FEL single-spike regime $ ightarrow$ intensity fluctuations
radiation instabilities	E-beam energy jitter \rightarrow resonant wavelength jitter

Expected FEL performance and stability from start2end EuPRAXIA@SPARC_LAB beams

• >80% successful (> $10^{11}N_{\gamma}$ /pulse) shots are expected

FEL radiation @und. exit	Unit	Range \pm error%
Wavelength λ	nm	4 <u>+</u> 2%
Energy at 25 m	μ	5-20 <u>+</u> 50%
FWHM Pulse length	fs	10 <u>+</u> 15%
Photon number	$\times 10^{11}$	2-4 <u>+</u> 45%
Bandwidth	%	0.2-0.4 11

FEL Beamline

M. Opromolla - Fundamental research and applications with the EuPRAXIA facility at LNF, Frascati 12/04/2024

Courtesy of F. Villa

12

FEL Photon diagnostics

Courtesy of F. Villa

Coherence measurements (transverse and longitudinal)

Single-shot diagnostics Multi-shot diagnostics **Intercepting diagnostics**

Bladed BPM

FEL optics and transport

Filters (solids and gas attenuators)

Bendable mirror in K-B configuration for tunable final focus

MiniTIMER compact delay line

Preliminary estimations on losses

|--|

	Linear Pol.	Circular Pol.
Central wavelength range	4.0 nm, 310eV	4.0 nm
Spectral bandwidth (rms,		
% to central wavelength)	0.088%	0.117%
Beam length (rms)	3.50 fs	3.76 fs
Beam transverse size		
(rms)	133 um	132 um
Beam divergence		
(half angle)	0.023 mrad	0.022 mrad
Photons per pulse	2.33*10^11	2.77*10^11
Polarization (direction)	Н	С
Repetition rate	100 Hz	100 Hz

<u>System</u>	<u>Transmission</u>	#
Mirror chamber	0.80 (0.85)	1
BDA	0.99	2
BPM	0.98	2
Spectrometer	0.75 (0.80)	1
Monochromator	0.08 to 0.02	1
Intensity	0.99	2
monitor		
Time	0.99	1
measurement		
Split & delay	0.41 (0.52)	1
attenuators	1 to 0	3
YAG screens	1 or 0	13
K-B focusing	0.64 (0.72)	1

Total transmission

- without monochromator and S&D: 34% (with R=85% mirrors: 44%)
- with Split & Delay: 14% (23%)
- with monochr. 1-g: 2.6% (3.3%) x $\delta\lambda/\Delta\lambda$
- with monochr. 2-g: **0.8%** (1.0%) x $\delta\lambda/\Delta\lambda$
- with monochr. :0.32% (0.52%) x $\delta\lambda/\Delta\lambda$ 2-g + S&D

AQUA Beamline Scientific Case

Experimental techniques and typology of samples

(Large) Viruses Organelles Bacteria/Cells Metals Semiconductors Superconductors Magnetic materials **Organic molecules**

Photo-fragmentation of molecules

Baseline layout

Radiator Undulators

Main features:

- variable gap, variable phase for adjustable polarization (six motors)
- $\lambda_u = 55.2 \text{ mm}, Np = 42, L_u = 2.4 \text{ m}$
- working gap: 10 ÷ 32 mm

Similar to FERMI FEL-1 radiators built by KYMA in 2009-2010

Main Physical Specifications:

- Phase error σ_{Φ}
- Trajectory offset error
- Trajectory tilt error
- Peak-to-peak field error $\Delta B/B$
- Integrated Quadrupole (N/S)
- Integrated Sextupole (N/S)

< 5 º rms < 20 µm rms < 25 µrad rms < 0.5% rms < 100 G < 100 G/cm

- a) Apple-II undulator, FERMI-style: linear/circular polarization
- a) Apple-X undulator, AQUA-style: selectable polarization, optimal control

FEL tuning range

FEL:

- Max harmonic = 10
- Undulator K-range from FERMI FEL-1: K_{max} = 3.4 (CR), 4.35 (LV), 5.45 (LH)

Electron beam parameters:

- Energy 1.0 -> 0.7 GeV
- Energy spread 200 keV @ 0.8 kA -> 400 keV@1.5 kA
- Duration: > 100 fs (long bunch mode, 200 pC)
 -> 8 fs (short bunch mode, 30 pC)
- Emittance 2 mm mrad in long bunch mode
 0.8 mm mrad in short bunch mode
- Beta function 10 m

Seed laser:

- minimum seed energy of 20 uJ
- average seed spot size of 0.5 mm²

independent on the wavelength

- seed duration 400 fs (long seed)

-> 200 fs (short seed), possibly

no frequency chirp -spectral width close to FTL

ARIA with short bunch & high current from LINAC+PWA

Seed: 460nm, 170 fs FWHM

Output pulse	HN=3	HN=9
λ (nm)	153	51
τ (FWHM, fs)	21	10
$E(\mu J)$	100	5
Size (mm)	0.74	0.43
Div. (mrad)	0.1	0.04
Time-BW product ()	2	0.69

Lower harmonics (\leq 5) saturate after two or three radiators only.

Radiation can be extracted beforehand, using the last radiator for multi-pulse/2-color generation

ARIA with long bunch & low current from LINAC

Seed: 460nm, 170 fs FWHM

Output pulse	HN=3	HN=9
λ (nm)	153	51
τ (FWHM, fs)	212	150
$E(\mu J)$	880	180
Size (mm)	0.85	0.35
Div. (mrad)	0.26	0.11
Time-BW product ()	2.7	3.8

Intensity and spectrum stable.

Ultra-narrow bandwidth pulses are produced with longer electron bunches \rightarrow high intensity allows monochromator for spectrum enhancement

ARIA short summary

- ARIA operates in High Gain Harmonic Generation and may cover the VUV spectral range down to 50 nm with an undulator similar to the one of FERMI FEL-1. Contrary to FERMI it uses a seed longer than the electron bunch and uses the electron bunch shaping and control capabilities of Eupraxia@SPARC_LAB for controlling the light pulse properties.
- A commercial laser based on an Optical Parametric Amplifier should have the correct pulse energy and features to seed ARIA.

It fills a niche in the world FELs scenario:

- ✓ No other seeded FEL facility covers the full range 50-180 nm, except for the DALIAN light source
- Superposition with HHG sources, but without limitations on polarization, photon energy tuning & intensity
- ✓ Synchronization with HHG sources or external lasers for multicolor pumpprobe operation.

Radiation properties at saturation Short beam (a) and Long beam (b) case

Radiation properties / HN	3a*	3b	5a	5b	7a	7b	9a	9b
Wavelength (nm)	153	153	92	92	65	65	51	51
Seed energy (µJ)	6	6	15	15	18	18	30	30
Dispersion R56 µm)	46	46	33	33	23	23	15	15
Pulse energy (µJ)	100	880	57	290	36	199	4	13
Photons/shot (10^{13})	7.6	67	2.6	13	1.16	6.47	0.1	3.3
FWHM Duration (fs)	21	212	24	210	20	180	10	150
Bandwidth BW (%)	1.7	0.23	0.7	0.11	0.52	0.08	0.47	0.14
Time-BW Product (#)	1.88	2.57	1.5	2.03	1.3	1.8	0.69	3.33
Pulse size (mm)	0.74	0.85	0.63	0.56	0.51	0.45	0.35	0.43
Pulse divergence (mrad)	0.1	0.26	0.07	0.18	0.05	0.15	0.04	0.11

*saturation after 3 radiators.

FEL Beamline

M. Opromolla - Fundamental research and applications with the EuPRAXIA facility at LNF, Frascati 12/04/2024

Courtesy of F. Villa 24

ARIA Beamline Scientific Case

Experimental techniques and typology of samples

- Photoemission spectroscopy
- Photoelectron Circular Dichroism
- Raman spectroscopy
- Photo-fragmentation of molecules
- Time of Flight Spectroscopy

M. Opromolla - <u>Fundamental research and applications with the</u> <u>EuPRAXIA facility at LNF</u>, Frascati 12/04/2024

Gas phase & Atmosphere (Earth & Planets) Aerosols (Pollution, nanoparticles) Molecules & gases (spectroscopies, time-of-flight) Proteins (spectroscopies) Surfaces (ablation & deposition)

Courtesy of F. Stellato 25

Conclusions

The AQUA undulator line is optimized for 4nm-5.7nm → extended spectral range by tuning beam energy.

✓ Ideal reference electron beam values as well as start-to-end beams from the EuPRAXIA@SPARC_LAB accelerator were used to perform 3D time dependent FEL simulations:
 O(10) fs-long, O(10) µJ pulses with O(10¹¹) N_γ/pulse at 4nm were obtained
 ✓ The FEL radiation stability has been discussed, shorter λ with higher E_{beam} or improved e-beam quality
 ✓ Studies of new electron beam working points as well as stabilization methods are in progress

The ARIA FEL line is under study: this line will extend to VUV the spectral range covered by EuPRAXIA@SPARC_LAB

- Feasibility and expected performance of such flexible and cost-effective VUV user facility delivering 15-100 fs-long FEL pulses close to Fourier transform limit are investigated
 - ✓ Selectable polarization VUV light allows to explore chirality and dichroism in biotic media

More detailed studies of photon diagnostics and experimental beamlines are in progress M. Opromolla - <u>Fundamental research and applications with the EuPRAXIA facility at LNF</u>, Frascati 12/04/2024

EuPRAXIA_PP Survey

	Load unfinished survey
0%	
	EuPRAXIA-PP Survey for the potential user community
	The aim of this survey is to establish a connection with the future EuPRAXIA users community and gain valuable insights into the potential requests and expectations of scientists who may be involved in forthcoming experi- ments with plasma acceleration sources. Your valuable input will help us shape the project to better serve the needs and aspirations of the scientific community. The questionnaire covers various aspects, including scientific cases, key parameters of the plasma source and emitted photon beam, and practical services such as local staff

assistance, accommodation, and catering. Your responses will play a vital role in steering the project's direction and ensuring that it aligns with the requirements of researchers like you.

The survey will take approximately 5-10 minutes to complete and your responses will help inform future planning relating to experiments and user services in EuPRAXIA.

There are 59 questions in this survey.

I read and understood the data policy
 Show policy

https://surveys.infn.it/index.php/718177

Thank you for the attention!

Supplementary slides

AQUA

Magnetic design & tuning range -> vacuum chamber geometry Longitudinal and transverse wake-fields Analysis of SABINA Undulator and first lessons for the AQUA undulator **Magnetic:** field quality, field integrals, trajectory and FEL amplification **Mechanical:** stability and reproducibility tests

FODO analysis for both polarizations vs. Ebeam

Courtesy of F. Nguyen

Tuning range: choice of the undulator period

FEL performance analyzed with Xie's scaling formulae accounting for 60% filling factor

From the K vs. gap formulae of a planar PMU with remanent $B_r = 1.2T$, min. magnetic gap=6mm, beam stay clear=5mm:

- 1) 18mm implies tuning range, plus saturation length contingency if operating at 4nm wavelength;
- 2) 16mm improves the saturation length limit, but almost no tuning range

From the K vs. gap formulae of a planar NbTi SCU with beam stay clear=5mm:

2) 16mm improves the saturation length limit, and tuning range is granted as well

Courtesy of F. Nguyen

Undulator specs

Table 1.1: Undulator basic parameters

Parameter	Value
Material	NdFeB
Remanent field B_r	1.35
Period λ_u	18 mm
Blocks per period	4
Block magnet x,y,z size	18 mm x 18 mm x 4.4 mm
Aperture diameter ϕ	6 mm
Minimum gap	1.5 mm
B_{max} (in LP)	0.93 T
K_{max} (in LP)	1.57
K _{rms} range	1.11 - 0.6
Resonance tuning range	3.5 - 5.24 nm
N periods	110
Module length	2 m

Table 1.2: Offsets and angles at the exit of the undulator for an electron entering with null offset and angle. The values are reported for the radial (x) and vertical (y) coordinate in both Linear (LP) and Circular (CP) polarization mode, at minimum gap of operation.

Figure 1.10: Longitudinal field profile of the AQUA undulator in Linear (LP) and Circular (CP) polarization.

Transverse resistive wall wakefields

Transverse RW wakefields induced inside the cylindrical Cu vacuum chamber of radius a=2...3 mm affect the electron bunch orbit along the undulator line, depending on the initial transverse offset at entrance.

Analytical treatment based on K. Bane & G. Stupakov formulae and the relationship between transverse and longitudinal RW impedances are used to estimate the kick angle k_T parameter

$$W_t(s) = \frac{2}{a^2} \int_0^s W_\ell(s') ds', \quad Z_t(k) = \frac{2}{a^2} \frac{Z_\ell(k)}{k}$$
$$W_z(s) = \frac{Z_0 c}{\pi a^2} e^{-s/4c\tau} \cos\left[\sqrt{\frac{2\omega_p}{ac}}s\right]$$
$$\varkappa_T = \frac{\text{kick angle [rad]}}{\text{unit path length [m] \times unit vertical offset [m]}}$$

Preliminary conclusions

Short bunch: Max kick: 2×10⁻⁵ mrad/m but outside the current peak

Long bunch: same order of magnitude, but superimposed to the current profile

Courtesy of F. Nguyen

Trajectory, matching

Quadrupole offset errors up to qx, y $\approx 80 \,\mu\text{m}$ do not hamper FEL lasing.

Quadrupole offset errors up to qx,y = 400 μm lead to an off-axis beam wander which can be precorrected with a corrector magnet (less than 10 mT if 3.6 cm-long), to ensure FEL amplification. (Ideal correction is when correctors are embedded into the quadrupole, share same iron)

Summary of Apple-X undulator tolerance studies

• The physical parameters and specification of the AQUA undulator system are established, most of the sensitivity studies have been carried out.

Transverse alignments

\checkmark	Longitudinal	RW	wakefields
	do not hampe	er the	FEL lasing

RW wakefields

✓ ±150 µm transverse offset
 -> ≈60 nrad kick

Symmetric (x=y)	off-axis injection
Offset	±25 μm
Tilt	$\pm 10 \ \mu rad$

Magnetic field errors

✓ Rms field errors of few mT
 ✓ 1st (2nd) field error integrals
 ≤ 5 10⁻⁵ Tm (Tm²)

- Mechanical stability tests of the SABINA APPLE-X modules were performed.
- The constructive design of the components requires engineering development and design support from industry.
- Future studies will include tolerance of undulator&bpm misalignments, specs of phase shifters.

SABINA

5

	Param	eter			V	alue	
	Materia	ıl			Ν	dFeB	
	Reman	ent field	B_r		1.28-1.31		
	Period	λ_u			5.	5 mm	
	Blocks	per per	iod			4	
	Block r	nagnet	x,y,z siz	e	28 mm x 13	n x 28 mi .65 mm	n
	Apertu	re diam	eter ϕ		14.	84 mm	
	Minim	um gap			5	mm	
	B_{max} (in LP)			0.	.97 T	
	K _{max} (in LP)			4.9		
	K _{rms} m	ax			3.5		
	Tuning	range (@ 30 M	eV	$20 - 100 \ \mu m$		
	Tuning	range (@ 100 N	/leV	$2 - 10 \mu m$		
	N perio	ods			22	(23.5)	
_	Module	e length			1.	35 m	
Kri	ทร				(a)		
		×*****				— mo ▲ dat	del ta
	10	20	30	40	50	gap (m	nm)

Lessons learned from the SABINA Undulator

Istitute Nazionale di Fisica Nucleare

Mechanical stability and reproducibility

In collaboraton with the Holographyc Interferometry & Fibre Optic Sensors (HIFOS) Laboratory at ENEA (ref. M. Caponero) we measured the deformations of the undulator guilders

Magnetic error analysis

Indication on the undulator feasibility comparing the SABINA undulator and the ideal RADIA model to reconstruct magnetic dipolar errors along the undulator

Undulator Mechanical tests on the SABINA undulator

FBG measurements

0.8

6.2 6.7

deformations in µm

9.1 6

Relative deformation that chages the flatness of reference surface

B: deformation of the girder

A: deformation of the frame on the guide rails supports (bottom triangular part)

A diffraction grating is produced by modifying the refraction index of the core of a fiber (FBG Sensors).

Rough approximation: the refractive index has a sinusoidal modulation along the axis of the fibre.

The sensor length is 10 mm, temperature and strain sensing at the level $0.1K - 1/10^6$ relative elongation sensitivity

Courtesy of I. Balossino, A. Selce, A. Polimadei, A. Vannozzi, M. Del Franco, L. Sabbatini, M. Caponero

Brief summary of FBG strain measurements

• Temperature dependence:

- max deformation of 0.12 nm over 2.7 °C/15 hours

• Mechanical

- by moving the four arrays all together from the minimum gap to the maximum gap, and in small steps from minimum gap to 50 mm of gap opening
- by shifting the phase at different undulator gaps. In
 Fig. (right) the effect of a phase shift with the undulator tuned at minimum gap is shown

FBG strain measurement conclusions

- The wavelength shifts are perfectly reproducible. No hysteresis or values not correlated to a gap macroscopic movement were observed, except for the temperature dependence
- The largest observed wavelength shift is ~0.2 nm for the gap sensors and a factor 2-5 lower for the strain sensor devices
- Gap sensors, the reference length is the plates separation. The plate sepatation cannot be measured an is virtually zero. In order to estimate an upper limit, we may consider that over an hypothetical 1 mm gap, the variation would be ∽ 150 nm. This has a negligible effect on the undulator field
- Strain sensors, the reference length is the sensor length: the local deformation is ~300 nm/cm.
- These deformation values are compatible or lower than those calculated by finite elements methods and **confirm the reliability of the undulator mechanical structure**
- A finite element model of the long AQUA undulator module should provide a suitable estimate of the expected structure deformation under the effect of magnetic forces

FBG measurements

Undulator tested for:

- Temperature dependence over a rance of 3 °C
- Magnetic forces: gap phase variations opening
- Sensors were used in two different ways:
- as **strain measurement**, by gluing the fiber fully adhered to the surface of the magnet holder-plates;
- as **gap measurement** devices, by placing the sensors between adjacent plates.

Distribution of sensors

EuPRAXIA@SPARC_LAB electron beam and AQUA FEL performances

Last start2end electron beam working point with jitters

Witness @undulator	Average	Std. Dev.
Energy (GeV)	1	0.0107
Charge (pC)	29.8	0.2
Peak current (kA)	2.5	
Proj. emitX (mm mrad)	0.69	0.02
Proj. emitY (mm mrad)	0.67	0.02
Proj. dE/E (%)	0.44	0.015

 σ_x

 σ_{y}

Energy

(µJ)

13.54

7×10⁻⁵

Ξ ^{6×10⁵}

5×10^{*}

4×10⁻⁵

0

5

15 z [m]

20

25

10

FEL simulation of a single shot

AQUA FEL performances: preliminary results from FEL statistics

FEL simulation statistics from the last simulated start2end e-beam working point, with jitters included

Photon number distribution

- 85/101 shots with photon number per pulse > 10^{11}
- E-beam energy jitter \rightarrow Radiation wavelength jitter

	Unit	Average	Error	Relative error
Wavelength λ	nm	4.0037	0.084	0.02
Energy at 25 m	μ	10.54	5.2	0.49
Photon number	$\times 10^{11}$	2.092	1.01	0.48

• The FEL wavelength jitter reduces to \sim 0.05 nm if only the photon pulses with $>10^{11}$ photons are considered.

Work in progress ...

ARIA

Undulators, seed and tuning range

ARIA performances analysis

Based on Xie model

Energy

Pulse duration

Estimated as the FT Limit of the bandwidth calculated with the Xie scaling relations

e-bunch duration 15 fs – **circular polarization** – Aria beam parameters

Pulse duration

Estimated as the FT Limit of the bandwidth calculated with the Xie scaling relations

e-bunch duration 8 fs – **circular polarization** – Aria beam parameters

Special modes of operation

ARIA FEL performances

Figure 3: Seed energy Es (solid line, black squares) and dispersion strength R_{56} (dashed line, white circles) vs harmonic number HN of the 460 nm seed.

Figure 4: Output pulse energy at saturation vs harmonic number, starting from the 460 nm seed pulse. Top plot a): short beam mode, 30 pC case. Bottom plot b): long beam mode, 200 pC case. The FWHM pulse duration is specified on top of each point.

Long-bunch long-seed mode Linear Polarization

An OPA such as the TOPAS can seed the ARIA FEL line covering the spectral range 200-50 nm with a single OPA process 2HG (B). Improved performances below 100 nm can be achieved with the 4th HG process (A) Courtesy of L. Giannessi

EuPRAXIA@SPARC_LAB FELs in the international panorama

FEL facility	Wavelength (nm)	Energy (µJ)	Photon # (10 ¹¹)	Length (fs)	Rep rate (Hz)
AQUA	4-10	10-20	1-5	10-20	100-400
FERMI	4-100	10-500	1-50	50-100	50
FLASH	4–60	10–500	1-100	10-200	10 ⁶
LCLS	0.12-4.5	10-3000	1-1000	1-100	100-10 ⁶
SACLA	0.6-4.5	10-20	1-2	10-50	60
Swiss-FEL	0.7-7	10-100	1-10	1-100	100
PAL XFEL	0.6-6.5	10-1000	1-1000	10-50	60
ARIA	50-180	1-500	100	1-200	100-400
FERMI	20-100	10-500	1-10	50-100	50
FLASH	4-60	10-500	1-10	10-200	10 ⁶
Swiss-FEL	30-100	10-200	0.5-5	1-100	100
DCLS	50-150	50-500	5-50	100	50

Summary of experimental techniques and samples

Technique	Samples
Coherent imaging	Cells, organelles, nanomaterials Water window for high-contrast hydrated samples
Photon scattering	Molecules, nanoparticles Structural and dynamical characterization
X-ray Spectroscopy	Warm-dense matter, organo-metallic compounds, magnetic materials <i>K, L and M edges falling in the FEL energy range</i>
Photoelectron Spectroscopy	Carbon-based materials, batteries, biomolecules Chemical dynamics
Ion Spectroscopy	Astrochemistry, biomolecules Radiation-matter interaction dynamics

This is a general overview and, *besides coherent imaging*, these techniques are possible both at the baseline AQUA beamline and at the "beyond-the-baseline" ARIA **Pump-probe** experiments to perform **time-resolved** measurements

M. Opromolla - Fundamental research and applications with the EuPRAXIA facility at LNF, Frascati 12/04/2024

Courtesy of F. Stellato