

Fundamental research and applications with the EuPRAXIA facility at LNF, Frascati, 4-6 December 2024

Radiation from laser target interaction

Alessio Del Dotto INFN -LNF alessio.deldotto@lnf.infn.it

Outline

- Brief introduction to **laser-target interaction** (solid target) for particle and radiation production
- **Baseline mechanism**: target normal sheath acceleration (TNSA)

• Some recent result of interests for fundamental physics applications

Overlaps with P. Tomassini talk, tomorrow at this workshop

• Remarks on existing and possible facilities at (LNF-)INFN

Laser matter interaction

 Ionization: from intensities order 10¹³ W/cm² the interaction between electromagnetic waves and matter is no longer resonant excitation of atomic states, but any material is readily ionized

• **Plasma oscillation**: after formation, plasma can further interact with a driving pulse providing intense electromagnetic fields

Laser-plasma coupling regimes

Laser-solid target interaction

Laser intensity and target thickness/manufacturing are key parameters

Plot from Tanaka et al., "Current status and highlights of the ELI-NP research program", https://doi.org/10.1063/1.5093535

- Chirped Pulse Amplification (CPA) techniques provided short high energy laser pulses → laser energy in energetic particles
- **Multi-species production** (protons, ions, gammas, neutrons)
- Different mechanisms can interplay depending on the **laser intensity** and the **target thickness and composition**

Target Normal Sheath Acceleration: well modeled regime of interest for INFN laser facilities

TNSA - target normal sheath acceleration

- The laser prepulse creates a preplasma on the target's front side.
- The main pulse interacts with the plasma and accelerates MeV electrons, mainly in the forward direction.
- The electrons propagate through the target, leave the rear side, resulting in a dense sheath.
- An electric field due to charge separation is created (TV/m) and ionize the atom at the surface.
- Ions are then accelerated in this sheath field.

Picture from Roth, M., and M. Schollmeier. "Ion acceleration-target normal sheath acceleration." arXiv:1705.10569 (2017)

- short-duration, high-flux proton beams
- energy conversion efficiency ~ few %
- broad, Maxwellian-like energy spread
- maximum ion energy scale with laser energy

TNSA modeling

1) Laser energy into hot electrons

Knowledge of prepulse

•Hydrodynamics of preplasma

•Kinetic (PIC) modeling of interaction and electron production

2) Hot electrons propagation trough the target

•Effect of cold return current

•Target resistivity

•Hybrid PIC/fluid modeling

3) Ion expansion into the vacuum due to sheath electric field

•PIC modeling

•Analytical models

Analytical modeling

• Fluid model describing electron and ion expansion

S Wilks, et al., PoP, 8,542 (2001); P Mora, Phys. Rev. Lett., 90, 185002 (2003)

• **Quasi-static field** by electrons and ions as test particles

J Schreiber, et al., PRL, 97, 045005 (2006); M Passoni & M Lontano, Phys. Rev. Lett., 101, 115501 (2008)

Particle-In-Cell (ab-initio modeling)

Pukhov, A. "Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser." Physical review letters 86.16 (2001): 3562.

TNSA – scaling from experiments

Plots from Macchi, Andrea. "A review of laser-plasma ion acceleration." arXiv:1712.06443 (2017).

short pulses (25–40 fs) solid targets (0.01–4.0 μm)

Laser energies in the plot almost compatible with the INFN laser facilities

Energy enhancement in foam-covered targets

- field increases in near critical materials
- target with structured surface and shape can maximize hot electrons and laser coupling

Laser on structured targets

If sub-picosecond laser pulse of relativistic intensity interacts with a pre-ionized polymer foam of near critical electron density \rightarrow **Direct Laser Acceleration**

Günther, M. M., et al. "Forward-looking insights in laser-generated ultra-intense y-ray and neutron sources for nuclear application and science." Nature Communications 13.1 (2022): 170.

Nuclear Excitation by Electron Capture (NEEC)

Wu, Yuanbin, et al. "Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture." Physical review letters 120.5 (2018): 052504.

 strong optical laser that interacts with a solid-state target containing a fraction of nuclei in the isomeric state: **NEEC** and **photoexcitation** may occur in the generated plasma.

See B. Mishra talk at this workshop

Electron density, temperature and the NEEC rate based on PIC simulation as functions of target depth.

I = 10^{18} W/cm² and λ = 800 nm

Laser facilities @ INFN

- FLAME (Frascati Laser for Acceleration and Multidisciplinary Experiments)
- Up to 10²⁰ W/cm²
- LWFA, solid target TNSA, study of new radiation sources → EuAPS

Pompili, R., et al. "Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions." Scientific reports (2016)

See F. Stocchi talk, this workshop

- **I-LUCE** (INFN Laser indUCEd radiation production)
- Two operational modes
 - Low power **50 TW** (nuclear fusion, nuclear physics, radioisotopes)
 - High power **350 TW** (proton, electron, neutron, gamma)

See P. Cirrone talk, this workshop

1

EuPRAXIA@SPARC_LAB

- Only photocatode laser currently funded in the project
- Additional space in the building can eventually host laser system improvement
- Experimental hall space has been also accounted

Conclusions & Remarks

• Laser-target interaction can be effective in accelerating particles and producing radiation suitable for fundamental physics research.

• **Stable control** of laser systems as well as advanced engineering of the **targets** are key points for advances in the field.

• Interesting applications are (and can be) foreseeing at INFN.