Plasma Wakefield Acceleration – Advantages and Challenges

Livio Verra

Fundamental Research and Applications with the EuPRAXIA Facility at LNF 04.12.2024

livio.verra@lnf.infn.it

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Plasma:

- Ionized gas
- Collisions can be (most of time) neglected \rightarrow Electromagnetic interaction dominates
- Large number of particles ➔ **collective** behavior
- Quasi-neutral $(n_{pe} \sim n_{pi})$

Plasma:

- Ionized gas
- Collisions can be (most of time) neglected \rightarrow Electromagnetic interaction dominates
- Large number of particles ➔ **collective** behavior
- Quasi-neutral $(n_{pe} \sim n_{pi})$

Plasma:

- Ionized gas
- Collisions can be (most of time) neglected \rightarrow Electromagnetic interaction dominates
- Large number of particles ➔ **collective** behavior
- Quasi-neutral ($n_{pe} \sim n_{pi}$)
	- \rightarrow It tends to keep the charge and current neutrality:
		- Plasma electrons (m_{ip} >> m_{pe}) move to compensate for the disturbance
	- \rightarrow Plasma screens electromagnetic fields

Plasma:

- Ionized gas
- Collisions can be (most of time) neglected \rightarrow Electromagnetic interaction dominates
- Large number of particles ➔ **collective** behavior
- Quasi-neutral (n_{pe} ~ n_{pi})
	- \rightarrow It tends to keep the charge and current neutrality:
		- Plasma electrons (m_{io} >> m_{oe}) move to compensate for the disturbance
	- \rightarrow Plasma screens electromagnetic fields

When the equilibrium is perturbed:

- Electrons oscillate with angular frequency $\omega_{pe} = \sqrt{\frac{n_{pe}e^2}{m_e \epsilon_0}}$
- Ions with $\omega_{pi} = \sqrt{\frac{n_{pi}e^2}{m \cdot \varepsilon_{eq}}}$ $\frac{d\Phi_{\mu\nu}}{dt}$ $\ll \omega_{pe}$ (ions considered immobile for short time-scales)

 $m_e \varepsilon_0$

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force

(inspired by P. Muggli's CAS lecture)

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force

(inspired by P. Muggli's CAS lecture)

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

 ω_{ne}

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force
- 3. Oscillation of plasma e- with $\omega_{\rm{pe}}$ \rightarrow periodic density variation

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force
- 3. Oscillation of plasma e- with ω_{ne} \rightarrow periodic density variation

 $\nabla \cdot \vec{E} =$ $\boldsymbol{\rho}$ $\boldsymbol{\mathcal{E}_0}$

 → Wakefields ←

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

Transverse (focusing – defocusing) wakefields

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force
- 3. Oscillation of plasma e- with ω_{ne} \rightarrow periodic density variation

 $\nabla \cdot \vec{E} =$ $\boldsymbol{\rho}$ $\boldsymbol{\mathcal{E}_0}$

 → Wakefields ←

- Let's take a plasma with density n_{pe}
- Let's take a relativistic charged bunch (e.g. e-) or a laser pulse

- 1. Transverse E field expels plasma electrons
- 2. Positively charged region behind the bunch head \rightarrow restoring force
- 3. Oscillation of plasma e- with ω_{ne} \rightarrow periodic density variation

 $\nabla \cdot \vec{E} =$ $\boldsymbol{\rho}$ $\boldsymbol{\mathcal{E}_0}$

 → Wakefields ←

A witness bunch can be accelerated to high energies if injected in the right phase!

Accelerating Gradient

• Fields in plasmas are sustained by the charge separation

Accelerating Gradient

- Fields in plasmas are sustained by the charge separation
	- As high as the cold wave-breaking field: $E_{WB}=\frac{m_e\ c\ \omega_{pe}}{g}$ $\frac{1}{q} \frac{w_{pe}}{q}$ \rightarrow oscillation length cannot exceed plasma wavelength
	- E.g. for n_{pe} = (10¹⁴ 10¹⁸) cm⁻³, E_{WB} $\sim 100 \frac{V}{m} \sqrt{n_{pe} [cm^{-3}]}$ = (1 100 GV /m)

Wave «breaks» when the maximum amplitude is reached

Accelerating Gradient

- Fields in plasmas are sustained by the charge separation
	- As high as the cold wave-breaking field: $E_{WB}=\frac{m_e\ c\ \omega_{pe}}{g}$ $\frac{1}{q} \frac{w_{pe}}{q}$ \rightarrow oscillation length cannot exceed plasma wavelength
	- E.g. for n_{pe} = (10¹⁴ 10¹⁸) cm⁻³, E_{WB} $\sim 100 \frac{V}{m} \sqrt{n_{pe} [cm^{-3}]}$ = (1 100 GV /m)

• RF cavities limited to 100MV/m by breakdown, caused e.g. by fatigue, pulse heating, etc..

➔ **one could dream of shrinking down the size of accelerators by orders of magnitude!**

Wave «breaks» when the maximum amplitude is reached

Accelerating Gradient – Experimental Results

Laser Wakefield Acceleration (LWFA)

VOLUME 43, NUMBER 4 PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

Beam-Driven Plasma Wakefield Acceleration (PWFA)

VOLUME 54, NUMBER 7

PHYSICAL REVIEW LETTERS

18 FEBRUARY 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen^(a) Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas Department of Physics, University of California, Los Angeles, California 90024 (Received 20 December 1984)

Accelerating Gradient – Experimental Results

Laser Wakefield Acceleration (LWFA)

Beam-Driven Plasma Wakefield Acceleration (PWFA)

VOLUME 54, NUMBER 7

18 FEBRUARY 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

PHYSICAL REVIEW LETTERS

Pisin Chen^(a) Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas Department of Physics, University of California, Los Angeles, California 90024 (Received 20 December 1984)

Driver: relativistic charged particle bunch

 \sim 42 GeV in 85 cm \rightarrow ~50GV/m n_{pe} = 2.8 x 10¹⁷ cm⁻³

I. Blumenfeld et al., Nature 455, 741-744 (2007)

Accelerating Gradient – Experimental Results

Laser Wakefield Acceleration (LWFA)

Beam-Driven Plasma Wakefield Acceleration (PWFA)

VOLUME 54, NUMBER 7

PHYSICAL REVIEW LETTERS

18 FEBRUARY 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen^(a) Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

Driver: high-intensity laser pulse Plasma's main advantage: and a charge particle bunch of the set of t Same (or higher) beam energy in considerably smaller space

Momentum (GeV/c) Momentum (GeV/c) \rightarrow Cheaper accelerators →Cheaper light sources, etc.. \rightarrow More of them

A. J. Gonsalves et al., PRL 122, 084801 (2019)

npe = 3.4 x 10¹⁷ cm-3

I. Blumenfeld et al., Nature 455, 741-744 (2007)

Main challenge – Beam Quality Preservation

Most of PWFA's work in the non-linear *blowout* regime:

Plasma electrons are expelled outwards forming a "bubble"

J. B. Rosenzweig et al., Phys. Rev. A 44, R6189(R) (1991)

Main challenge – Beam Quality Preservation

Most of PWFA's work in the non-linear *blowout* regime:

- High gradient
- Linear focusing force

Plasma electrons are expelled outwards forming a "bubble"

J. B. Rosenzweig et al., Phys. Rev. A 44, R6189(R) (1991)

Main challenge – Beam Quality Preservation

Most of PWFA's work in the non-linear *blowout* regime:

- High gradient
- Linear focusing force
- \rightarrow Causing the main challenge: beam quality preservation (vital for applications)

Main challenge – Energy spread (*longitudinal* quality)

- Accelerating field not uniform along the bubble \rightarrow Energy spread increasing while acceleration happens
- Solution: "*loading*" the wake with the presence of the witness bunch itself

Costant accelerating field within the witness bunch

Main challenge – Energy spread (*longitudinal* quality)

➔Experimental Demonstrations:

Combination of beam loading and initial chirp to obtain final small energy spread 21

LETTERS

 $L_p = 3$ cm

25

 z (μ m)

 $\frac{40}{20}$

50

Check for undat

Main challenge – Emittance Preservation (*transverse* quality)

- Focusing force is transversely linear
- **if:** beam envelope is *matched* to the focusing force (which is extremely strong!)
	- \rightarrow Possible emittance preservation

else: different energy slices rotate at different rates in transverse phase space

- \rightarrow slice emittance preserved (linear focusing)
- \rightarrow projected (i.e., overall) emittance grows!

Main challenge – Emittance Preservation (*transverse* quality)

- ➔Experimental Demonstration: Focusing force is transversely linear
	- **if:** beam envelope is *matched* to the focusing force
		- (which is extremely strong!)
		- \rightarrow Possible emittance preservation

else: different energy slices rotate at different rates in

- transverse phase space
- \rightarrow slice emittance preserved (linear focusing)
- \rightarrow projected (i.e., overall) emittance grows!

Main Challenges

The main challenge remains:

• Do everything at the same time

Energy spread minimization

Main Challenges

The main challenge remains:

• Do everything at the same time

Energy spread minimization

• Do it many times \rightarrow high repetition rate

Challenges \rightarrow Opportunities

• Transverse (betatron) oscillation induces radiation emission in plasma (A. Frazzitta's talk)

• Large energy chirp may be used to compress the witness bunch

 \rightarrow Extremely short bunches and light pulses (<fs)

Challenges \rightarrow Opportunities

• Study of Beam-Plasma interactions and instabilities is an active field (e.g., laboratory astrophysics)

Challenges \rightarrow Opportunities

• Study of Beam-Plasma interactions and instabilities is an active field (e.g., laboratory astrophysics)

Challenges → Opportunities

• Study of Beam-Plasma interactions and instabilities is an active field (e.g., laboratory astrophysics)

At EuPRAXIA

- We will exploit the advantages (large energy gain), while handling the challenges to deliver high-quality bunches → Compact Free Electron Laser
- Opportunities for "fun physics", where the challenges are used
	- \rightarrow Radiation generation
	- \rightarrow Compression to ultra-short bunches
	- \rightarrow Beam-plasma instabilities

 \rightarrow ….

Thank You For Listening!