

High performance ISOL systems for the production of radioactive ion beams

Progress Report 2024

Pietro Rebesan – INFN Sezione di Padova

Outline

- Introduction the TIS unit
 - The SPES target
 - The SPES FEBIAD ion source
- The HISOL
 - Project Objectives
 - Research Methodology
 - Timetable and milestones
 - Some Results WP 2 Examples
- HISOL_NEXT

The **SPES** Target – Ion Source Unit

The Target – ion source unit is the core of an ISOL facility.

It's composed of the **production target** connected to the **ion source**. Such devices are contained in a **vacuum chamber**.

The growing demand for high intensity and pure Radioactive Ion Beams (RIBs) is pushing to improve the performance of the existing ISOL Targets and Ion Sources, since these are the objects that most of all affect the intensity and the purity of RIBs.

ISOL target requirements

Target requirements:

- open porosity and reduced grain size
- high thermal conductivity
- high mechanical properties
- stability at high temperature
- production of radioisotopes

Total isotope yield deeply affected by <u>open porosity</u> (diffusion/effusion processes)

- Diffusion paths
- ---> Effusion paths
 - Re-diffusion paths

NFN

BULK TARGET = BAD RELEASE!! <u>Need of targets with regular improved microstructure</u>

The **SPES** FEBIAD Ion Source

The Standard FEBIAD Ion Source

- more than **20 components**
- long procedure for alignment (manual operation)
- performance variation and reduced reproducibility 🔱

NFN

HISOL Objectives

Main goal:

Development of a new generation of High Performance ISOL Targets and Ion Sources with cutting edge technologies available within INFN and its collaboration network.

Such aim foresees three fundamental objectives:

- WP 1
 Study and development of innovative recipes and methods to produce ISOL targets
- WP 2 Study and development of innovative methods to produce and operate ion sources
 - Characterization and multiphysics simulation of the obtained components
- **WP 3** by means of advanced techniques

Research Methodology – AM production, Tests, & Characterization

Work package 1: Development of High Performance ISOL Targets

Production of **TiC/SiC samples** with **regular structures** for **characterization** activities

Development of **TiC/SiC disks** with regular structures for **ISOL Targets**

Long term **high temperature test** of a TiC/SiC ISOL Target prototype

Aim: maximize heat transfer and release

Work package 2: Development of High Performance ISOL Ion Sources

Production and test of **W**, **Ta and Mo Ion Source components** with **complex shapes**

Alternative anode-cathode interfaces

Production of ion beams with the Ion Source prototype (also molecular beams)

Aim: improve the ionization efficiency, the source stability and reproducibility

HISOL – 27th June 2024

Work package 3: Materials Characterization and Multiphysics Simulation

Microstructural, thermal, electrical and structural characterization

Multiphysics Simulation of High Performance ISOL Targets and Ion Sources

Aim: component characterization

<u>WP 1</u> – Timetable & Milestones

			Yea	r 1			Ye	ear 2	
_		M3	M6	M9	M12	M15	M18	M21	M24
WP1	Development of High Performance ISOL Targets								
T1.1	Production of TiC samples with regular structures for characterization activities		MS1.1						
T1.2	Development of TiC disks with regular structures for ISOL Targets				MS1.2				
T1.3	Production of SiC samples with regular structures for characterization activities								
T1.4	Development of SiC disks with regular structures for ISOL Targets							MS1.3	
Т1 Б	Long term high temperature test of a TiC/SiC ISOL Target coupled with a Plasma								
11.5	Ion Source								10131.4
	WP1 milestones								Date
MS1.	1 Production of TiC/SiC samples with regular structures for characterization activit	ies							M06
MS1.	2 Printing Test of TiC disks with regular structures for ISOL Targets								M12
MS1	.3 Development of TiC/SiC disks with regular structures for ISOL Targets								M21
MS1	4 Long term high temperature test of a TiC/SiC ISOL Target coupled with a Plasma	lon Sc	ource						M24

<u>WP 2</u> – Timetable & Milestones

		Year 1			Year 2				
		M3	M6	M9	M12	M15	M18	M21	M24
WP2	Development of High Performance ISOL Ion Sources								
T2.1	Study, optimization and production of W, Ta and Mo Ion Source Components with Complex Shapes				MS2.1				
T2.2	Thermionic emission tests with Ta cathodes specifically designed for high electron fluxes								
T2.3	Production of stable ion beams with the High Performance Plasma Ion Source prototype				MS2.2				MS2.2
T2.4	Production of molecular beams with the Plasma Ion Source prototype				MS2.4				MS2.5

	WP2 milestones	Date
MS2.1	Production of W, Ta and Mo Ion Source Components with Complex Shapes: first prototype	M12
MS2.2	Preparation of the Front-End for stable ion beam production	M12
MS2.3	Production of stable ion beams with the High Performance Plasma Ion Source prototype	M24
MS2.4	Preparation of the Auxiliary Components for the production of molecular beams	M12
MS2.5	Production of molecular beams with the Plasma Ion Source prototype	M24

<u>WP 3</u> – Timetable & Milestones

		Year 1			Year 2				
		M3	M6	M9	M12	M15	M18	M21	M24
WP3	Materials Characterization and Multiphysics Simulation								
T3.1	Microstructural Characterization				MS3.1				
T3.2	Thermal and Electrical Characterization								
Т3.3	Mechanical Characterization						MS3.2		
Т3.4	Multiphysics Simulation of High Performance ISOL Targets								MS3.3
T3.5	Multiphysics Simulation of High Performance ISOL Ion Sources				MS3.4				MS3.5

	WP3 milestones	Date
<u>MS3.1</u>	Microstructural Characterization	<u>M12</u>
<u>MS3.2</u>	Thermal, Electrical and Mechanical Characterization	<u>M18</u>
MS3.3	Multiphysics Simulation of High Performance ISOL Targets	M24
MS3.4	Definition of the Multiphysics Simulation strategy for High Performance ISOL Ion Sources	<u>M12</u>
MS3.5	Multiphysics Simulation of High Performance ISOL Ion Sources	M24

T2.1 & T3.5: Study, optimization and production of W, Ta and Mo Ion Source Components with Complex Shapes

Edoardo Bonigolo, Master thesis in Products Innovation Engineering, UNIPD, Supervisor S. Carmignato - to be defended March 2024

T2.2: Thermionic emission tests with Ta cathodes specifically designed for high electron fluxes

A **dedicated set-up** for the evaluation of the thermionic effect and the high temperature deformation measurement was developed.

Possible observations:

- Effect of the component surface finishing
- Effect of different anode grid geometries
- High temperature deformation during long term operation

T2.3: Production of stable ion beams with the High Performance Plasma Ion Source prototype

ISOLDE offline 1: ion source reference test facility

Research Group – for INFN PD

INFN-PD						
Name	Expertise – Activity in the project	WP	FTE			
Adriano Pepato (PD local resp.)	AM of metallic components	2, 3	0.3			
Pietro Rebesan	design of components/parts for AM	2, 3	0.1			
Massimiliano Bonesso	AM of metallic components	2, 3	0.1			
Razvan Dima	design of components/parts for AM	1, 2	0.1			
Simone Mancin	thermal characterization	2, 3	0.5			
Lisa Biasetto	microstructural characterization	2, 3	0.5			
Paolo Gragori	AM of metallic components and	2.2	0.5			
radio Gregori	microstructural characterization	2, 3	0.5			
Mattao Parini	AM of metallic components and	2.2	0.5			
	microstructural characterization	2, 3	0.5			
Total INFN-PD FTE						

INFN PD

UniPd

ProM

HISOL_NEXT 2025 - 2028

Development of **H**igh performance **ISOL** target – ion source systems for the **NEXT** on-line operation at SPES

→ The HISOL_NEXT experiment is designed to continue and finalize the development of ISOL target – ion source systems that began with the HISOL experiment. The goal is to make these systems available for the online commissioning campaign of the ISOL SPES facility.

Participants: INFN-LNL, INFN-PD, INFN-PV → 3 years project

(0)

Backup

WP 1 - Developments in HISOL

T1.1 & T1.2: Production of TiC disks with regular structures for characterization activities and long-term high temperature tests

• Production and microstructural, thermal and mechanical characterization of TiC disks via Direct Ink Writing

5 mm

Alessandro Breda's master thesis in Materials Engineering, UNIPD, Supervisor M. Manzolaro - defended April 2023

Gabriele Sala's master thesis in Materials Engineering, UNIPD, Supervisor M. Manzolaro - defended October 2023

 Production, characterization and long-term high temperature tests of TiC samples produced via Digital Light Processing

More details in Alice Zanini's presentation

WP 1 - Developments in HISOL

T1.3: Production of SiC samples with regular structures for characterization activities

Preliminary assessment of the production of SiC samples via Digital Light Processing

More details in Alice Zanini's presentation

EXTRA: Production and characterization of Oxide insulators with Additive Manufacturing via Fused Filament Fabrication (WP1-WP2 transversal activity)

Alessandro Testolin's master thesis in Materials Engineering, UNIPD, Supervisor G. Franchin - defended October 2023

More details in Giorgia Franchin's presentation

EXTRA: LaCx and UCx sample production with Digital Light Processing (activity performed at JRC-Karlsruhe)

- La source: lanthanum nitrate
- Complexing agent: citric acid
- Polymerization agent: PEG 400 + sucrose
- Photopolymer: Pegda M_n 575

CERAM

La:CA:PEG 400:sucrose = 1:2:2:0.79 -> photocurable sol-gel formulation for DLP

Uranyl cations exhibit high photosensitivity -> photoexcitation of uranyl cation under UV-vis light leads to the formation of uranyl radical species that can act as photoinitiator for photopolymerization processes

U:CA:sucrose = 1:2:0.5

- U source: uranyl nitrate
- complexing agent: citric acid
- polymerization agent: sucrose
- photopolymer: Pegda M_n 575

-> photocurable sol-gel formulation for DLP

as printed

as printed + photoabsorber to improve printing quality

NFN

• thermal treatment in Ar at 1700°C, different dwelling times tested

- disappearance of UO₂ peaks at 24 h
- graphite free carbon peak

- G band > D band -> ordered graphite domains at 24 h
- noisy signal but relevant peaks for carbon phase

Work package 3 organization

<u>main</u> suppo

Work package 3: Materials Characterization and Multiphysics Simulation

emissivity and thermal conductivity measurements

microstructural characterization

electrical resistivity measurements

Reliable Material PropertyData at High Temperature are
required for RobustMultiphysics Simulation ofISOL Targets and Ion Sources

HISOL – 27th June 2024

thermionic emission measurements

multiphysics simulations

T3.1: Material development and microstructural characterization

PhD Candidate Leoanrdo Salvò training in ProM, Trento Luca Da Tos's master thesis DTG, UNIPD, Supervisor S. Carmignato - defended 2024 First LPBF Nb samples produced at ProM

Surface treatment on Ta sample to decrease roughness (collaboration with Surface Technologies and Superconductivity Service at INFN-LNL)

Buffered Chemical Polishing (BCP)

Plasma Electrolytic Polishing (PEP)

Electropolishing (EP)

T3.2: Thermal and Electrical Characterization

Davide Cester, Master thesis in Materials Engineering, UNIPD, Supervisor M. Manzolaro - defended July 2023

T3.3: Mechanical Characterization

Davide Cester, Master thesis in Materials Engineering, UNIPD, Supervisor M. Manzolaro - defended July 2023 Leonardo Salvò, Master thesis in Materials Engineering, UNIPD, Supervisor M. Manzolaro - defended October 2023

T3.4: Multiphysics Simulation of High Performance ISOL Targets

A complex multistep simulation process

T3.5: Multiphysics Simulation of High **Performance ISOL Ion Sources**

A path towards a FEBIAD ion source with enhanced performances benefitting of the flexibility of the LPBF technology

