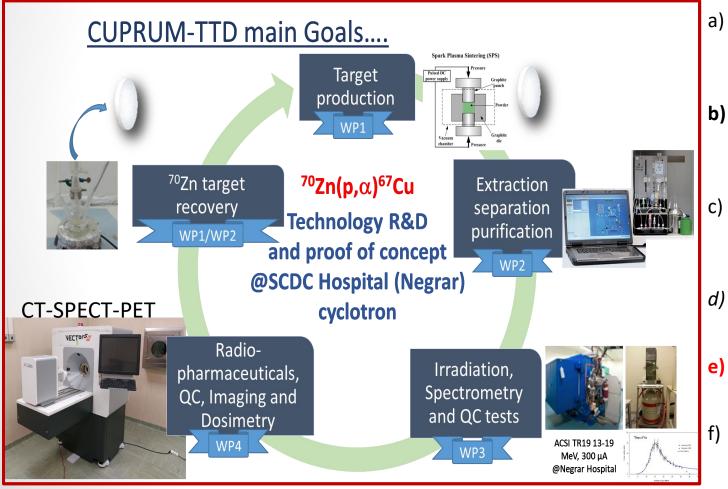


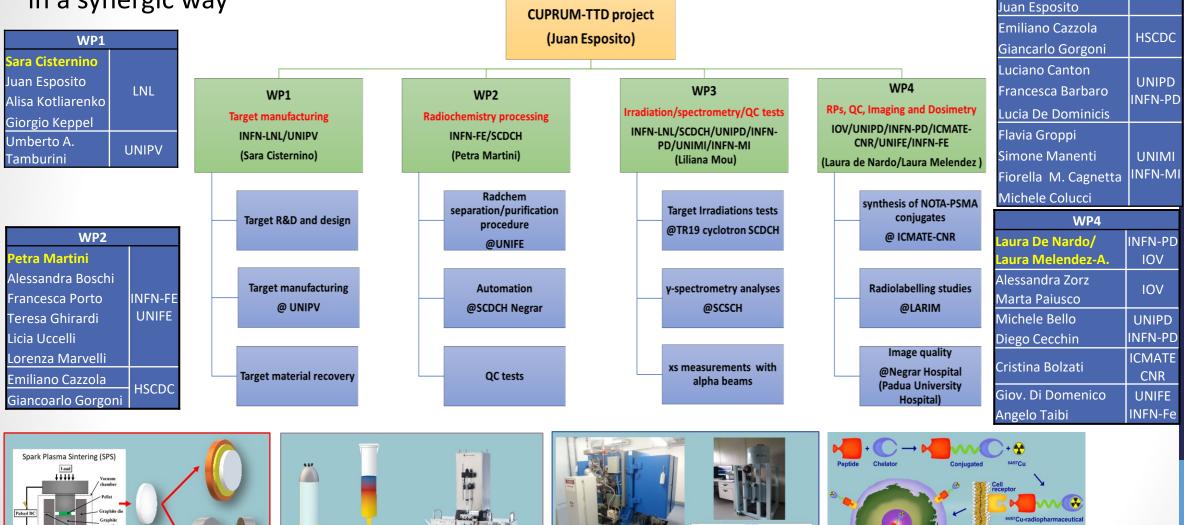
CUPRUM-TTD (2023-25)


Planned activities and Budget Requests 2025

^{67/64}CU PRoduction and Use in Medicine – Target Technology Development

CUPRUM-TTD (2023-2025) main project goals

To develop a reliable technology aimed at **producing clinical-grade batches of** ⁶⁷Cu-⁶⁴Cu by small medical cyclotrons on a routine basis.


-) to acquire a robust and reliable target manufacturing technology to produce ⁷⁰ZnO target
- to manufacture targets able to sustain beam power levels from medical cyclotrons (i.e. 18-20 MeV, 2/3 kW max);
 - to develop/optimize the radiochemistry separation/purification methods: Zn→Cu to achieve a clinical-grade ⁶⁷Cu radionuclide;
-) in-vitro cells studies with ⁶⁷Cu-labelleded RPs using NOTA derivate as chelating agent;
 - phantom imaging studies of produced ⁶⁷Cu with pre-clinical and clinical SPECT;

to develop/optimize technology for the costly ⁷⁰Zn-enriched target material recovery.

CUPRUM-TTD project organization

4444

CUPRUM-TTD project is organized in Work Packages (WP), interacting each-other in a synergic way

ACSI TR19/300 (13-19) MeV, 300 μA @Negrar Hospital

ocalization of 64/67 Cu-ray

3

WP3

LNL

<mark>Liliana Mou</mark> Gaia Pupillo

CUPRUM-TTD Timetable and milestones planned

GANTT chart

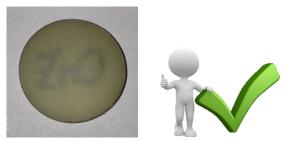
• Cronoprogramma del progetto CUPRUM_TTD (2023-2025)

		1st year	2023		2nd ye	ar 2024			3rd ye	ar 2025		
	1°	2°	3° 4	l° 1	° 2°	3°	4°	1°	2°	3°	4°	
WP1	Target	t manufac	turing, ch	aracteri	zation, and	materi	al recov	ery				
M1												M1: SPS technique development for natZnO target manufacturing (Nb/Au/ZnO kind)
M2												M2: recovery process development for natZnO, and material powders characterization (SEM, EDS, profilometer)
M3												M3: target production with SPS technique starting from recovered natZnO;
WP2	Target	t radioche	mistry pro	ocessing								
M4												M4 : development of separation and purification procedure using cold targets of natural ZnO
M5												M5 : development of a solid target dissolution reactor and optimization of automation of 6xCu separation,
M6												M6: development of an automatic system for the separation and purification of Cu-67 from the target of ZnO and other contaminants,
M7												M7 : productions tests of Cu-67 using enriched target and determination of the extraction yield and purity of the final product.
M8												M8: Quality controls analysis on Cu-67 produced and isolated for pharmaceutical studies
WP3		Cyclotro	n Irradiati	ion, Spe	ctrometry	and QC	test					
M9												M9 : ^{nat} ZnO targets irradiation for thermomechanical stability tests
M10												M10: ^{nat} ZnO targets irradiations for radiochemical separation optimization
M11												M11: perform γ -spectrometry measurements to estimate the efficiency of the radiochemical procedure (natZn targets)
M12												M12: three long irradiations for Cu-67 production on enriched ⁷⁰ ZnO targets.
M13												M13: perform y-spectrometry measurements to estimate the activity and RNP of the 67Cu produced by irradiation of 70Zn targets
M14												M14: xs measurements for alternative 67-61 Cu nuclear reaction routes $64Ni(\alpha,p)67Cu$ and $59Co(\alpha,2n)61Cu$
WP4	RPs de	evelopmer	nt, cellular	, dosimo	etric and I	n <mark>aging</mark> s	tudies					
M15												M15 : synthesis and characterizatoin of NOTA-PSMA conjugates
M16												M16 : Radiolabeling and stability studies of synthetized conjugates
M17												M17: Determination of specific binding of Cu-PSMA RPs to PSMA receptors naturally expressed by PCa tumor cells, uptake % and internaliza
M18												M18 : Determination of cell absorbed dose and the surviving fraction after the treatment with 6xCu-NOTA RPs
M19					T	*						M19 : Determination of contrast, sensitivity, and spatial resolution of the SPECT/PET imaging of the produced 64-67Cu

First 18 months activities

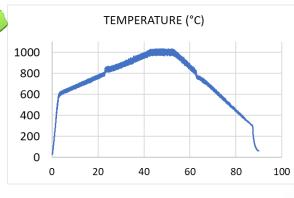
Resume on R&D activities performed (as of June 2024)

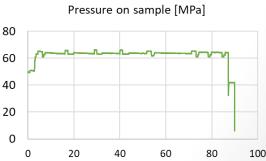
CUPRUM-TTD WP1 (LNL+FE): Target manufacturing, characterization,


and material recovery

1st year 20231°2°3°WP1Target manufacturingM1100M2100M3100	3 2nd year 2024 3rd year 2025 4° 1° 2° 3° 4° g, characterization, and material recovery Instantial recovery Instantial recovery	D1: no. 2-3 ZnO targets for surface analyses investigations (WP2); D2: no. 5 ZnO targets for cold test chemical processing optimization (WP2); D3: 3 ⁷⁰ ZnO targets for production test; D4: recovered ^{nat} ZnO powders. M1: SPS technique development for natZnO target manufacturing (Nb/Au/ZnO kind) M2: recovery process development for natZnO, and material powders characterization (SEM, EDS, profilometer) M3: target production with SPS technique starting from recovered natZnO;
WP1	Main activities	 Final Target material 2.0 g [⁷⁰Zn]ZnO-enriched material already purchased (~ 20\$/mg) – 1 target 500 mg → ~ 4 targets manufacturing
Juan Esposito Alisa Kotliarenko	 Sintering of ZnO po Marcine Control (S. Ciste 	owder → pellet in a holder for irradiation owder and target system investigation (ZnO/Au/Nb) rnino and G. Piteo)
LI Anselmi-	- ZnO powder and	pellets to Ferrara University for chemistry and recovery studies (WP2) radiation with the capsule & composite target (WP3)
Petra Martini Alessandra Boschi Francesca Porto UN	IIFE - SEM, XRD analysis	S. Cisternino, A. Kotliarenko, G. Piteo) and heat treatments for residual carbon removal
Giorgia Speltri Lorenza Marvelli	A. Kotliarenko et al., First Results	deposition onto different substrates (Au/Nb – DLC) s on Zinc Oxide Thick Film Deposition by Inverted Magnetro S 10, 2810, 2023, DOI: 10, 2300/ma16103810
Activities shared	Target recovery and recyclin	ag in collaboration with WP2

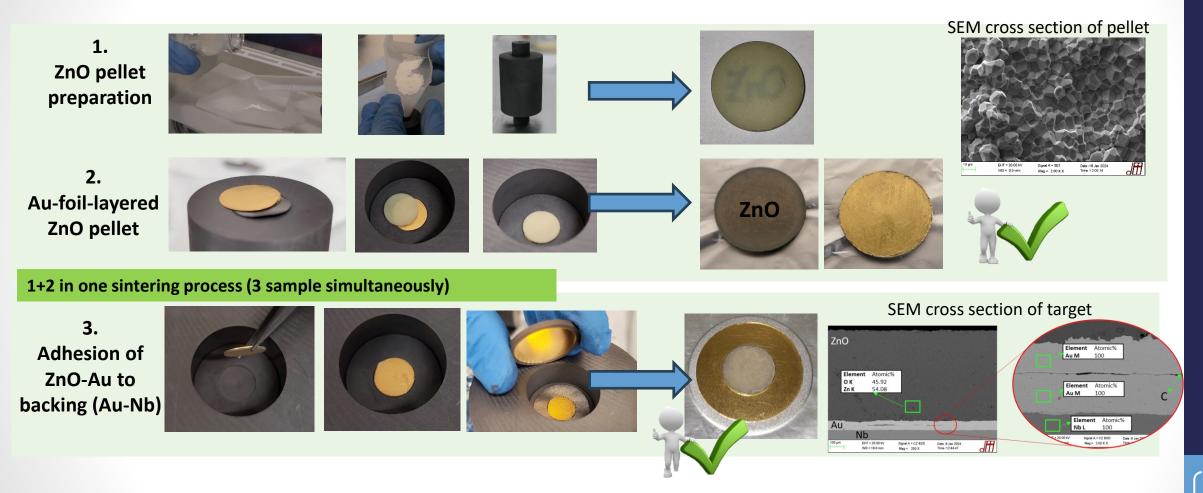
CUPRUM-TTD WP1 (LNL): ^{nat}ZnO pellets SPS R&D program underway


			S	PS pa	rameter	s		Results					
N of EXP	Mass [mg]	step	Temp. [°C]	Force [kN]	Pressure on sample [MPa]	Time [min]	Heating rate [°C/min]	mass after [mg]	mass lost [mg]	thickness [µm]	density [g/cm3]	%bulk density	
		1	600	4	51	0,1	200		255.9 8.0 <u>±</u> ± 10.4 7.8		5.3 ± 0.1	95.0 ± 2.1	
(n=41)	263.9 ± 5.9	2	1000/850	5	64	10	10			612.4 ± 23.1			
	5.5	3	300	5	64	0,1	20	2011		2012	0.1		
	267.5±	1	600	4	51	0,1	200	261.7 ±	5.7 ±	626.8±	5.3±	94.8±	
(n=3)	1.2	2	850	5	64	10	10	0.6	1.0	2.0	0.0	0.2	
		3	300	5	64	0,1	20	0.0			0.0		



Sintering of 3 pellets at once (in series) Cross-section view

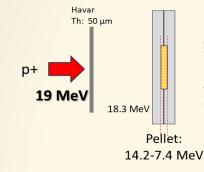
TOP **CENTRAL** BOTTOM 1 cm dff Date :18 Jan 202 Time :11:59:39 dffl Signal A = SE1 Mag = 2.00 K X Date :18 Jan 202 Time :12:09:10 dff Signal A = SE1 Mag = 2.00 K X Signal A = SE1 Mag = 2.00 K X Date :18 Jan 2024 Time :12:05:14 EHT = 20.00 k EHT = 20.00 kV WD = 9.0 mm Density [g/cm³] / % 5.31±0.09 / 94.7±1.6% 5.35±0.08 / 95.3±1.4% 5.29±0.09 / 94.4±1.6% bulk (n=5)



7

Mass densities and the microstructure are compared to the one-pellet-sintered

CUPRUM-TTD WP1 (LNL):


New target configuration - ZnO pellet bonding to backing (Au/Nb) by SPS

#9 targets from ZnO commercial powder were already realized and tested under irradiation and used for radiochemical processes

CUPRUM-TTD WP1 (LNL+FE): Irradiations for thermomechanical test

Irradiation n. 2 CUPRUM_TTD→ pellet ZnO TT_179 (after HT) Date: 27/09/2023 @ Negrar

Power density on target system: 700 W/cm²

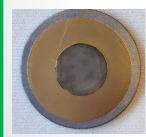
Power density on pellet: 260 W/cm²

#2 irradiations 15-30 μA; 19 MeV; 5 min

@ ACSI TR19/300 Sacro Cuore Don Calabria Hospital cyclotron

Pellet in Al holder configuration:

9


After irradiation

Main considerations

- Not easy to open the capsule
- The pellet is attached to the capsule;

- Energy on pellet 14 MeV, not optimal for ⁶⁷Cu production

ZnO-Au/Au-Nb configuration

#4 irradiations 15-25-35-50 µA; 19 MeV; 5 min

Max beam power areal density achieved = 1.2 kW/cm²

Prior irradiation

After irradiation

System suitable when low radioactivity batches are needed for research purposes

- ✓ Targets manufactured by SPS LARAMED technology withstand the maximum proton beam current intensity available at SCDCH cyclotron (solid target station available)
- ✓ Several irradiation radiochemistry and dissolution/separation/purification tests were performed based upon this target configuration

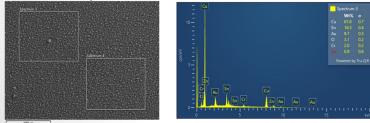
CUPRUM-TTD WP2 (FE): Target radiochemistry processing

1st year 2023 2nd year 202	24 3rd year 2025	D5: Zn/Cu separation and purification procedure
1° 2° 3° 4° 1° 2°∧ 3°	4° 1° 2° 3° 4°	D6: semi-automatic module for the separation and purification of ⁶⁷ Cu from ZnO target
WP2 Target radiochemistry processing		D7: ⁶⁷ Cu radiochemistry product quality assessment
M4 M5 M6 M7 M8		M4 : development of separation and purification procedure using cold targets of natural ZnO M5 : development of a solid target dissolution reactor and optimization of automation of 6xCu separation, M6: development of an automatic system for the separation and purification of Cu-67 from the target of ZnO and other contaminants, M7 : productions tests of Cu-67 using enriched target and determination of the extraction yield and purity of the final product M8: Quality controls analysis on Cu-67 produced and isolated for pharmaceutical studies
Construction of the second sec	esin 9 ICP-MS analysis rever content is below the	WP2 Target processing Separation and purification procedure Dissolution Chemical Purity Resins elution profiles Brode (reproducibility tests are ongoing) Manual procedure optimization PatZnO target
Hot test for validation and SEM		= 17,9 MeV Cu rrent = 5,3 uA Semi-automatic WP2
$\frac{{}^{\circ G_{G}}}{{}^{\varepsilon G_{G}}} \frac{Wastel-24h}{{}^{\varepsilon G_{G}}} Wastel-24h}{{}^{\varepsilon G_{G}}} WASTE$ $\frac{{}^{\circ G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} WASTE$ $\frac{{}^{\circ G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}}{{}^{\varepsilon G_{G}}} \frac{{}^{\varepsilon G_{G}}}} $	**Cu PRODUCT 655.008 keV ↓ E_=1185.224 keV ↓ E_=908.631 keV ↓ E_=908.631 keV ↓ E_=1446.492 keV ↓ OI ↓ Cu ↓ Cu	 a 20 minutes purification b purification c purification <lic li="" purification<=""> c purification c purif</lic>

CUPRUM-TTD WP2 (FE): Target radiochemistry processing

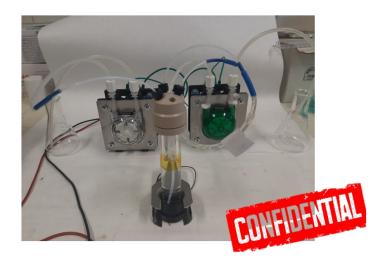
	1st year 2023 2nd year 2024						3rd ye	ear 2025	i.	D5: Zn/Cu separation and purification procedure			
	1°	2°	3°	4°	1°	2°	3°	4°	1°	1° 2° 3° 4°		4°	D6: semi-automatic module for the separation and purification of ⁶⁷ Cu from ZnO target
WP2	Target	radioch	emistry	proces	sing								D7: ⁶⁷ Cu radiochemistry product quality assessment
M4									M4 : development of separation and purification procedure using cold targets of natural ZnO				
M5							7						M5 : development of a solid target dissolution reactor and optimization of automation of 6xCu separation,
M6										M6: development of an automatic system for the separation and purification of Cu-67 from the target of ZnO and other contaminants,			
M7													M7 : productions tests of Cu-67 using enriched target and determination of the extraction yield and purity of the final product.
M8													M8: Quality controls analysis on Cu-67 produced and isolated for pharmaceutical studies

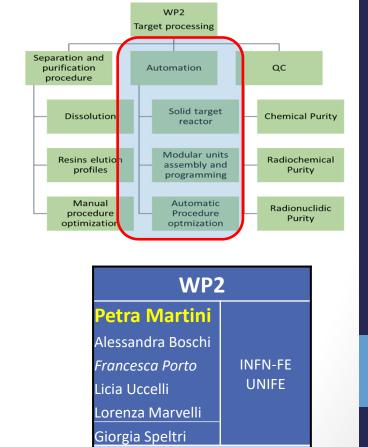
New separation strategy


Proof of concept

- Chronoamperometry
- EDS + ICP-MS characterization

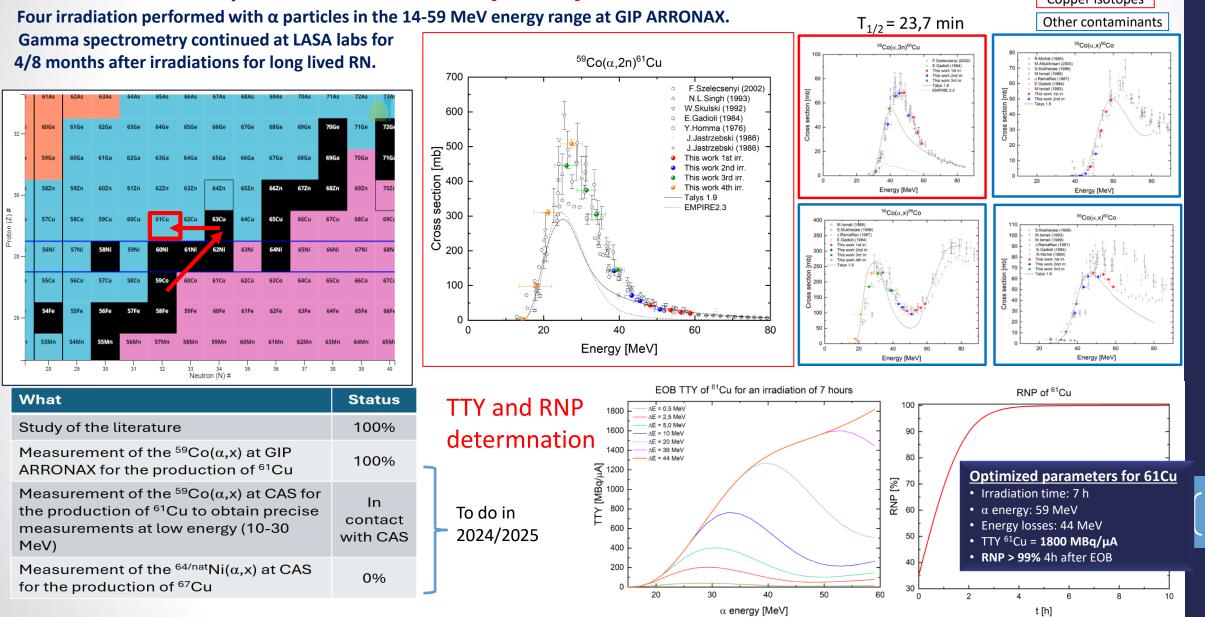
Electrode: Gold plated FTO substrate Reference electrode: SCE Mother solution: H2SO4 0.1M + ZnSO4 3mM + CuSO4 3mM Copper deposition at different potentials


Electron Image



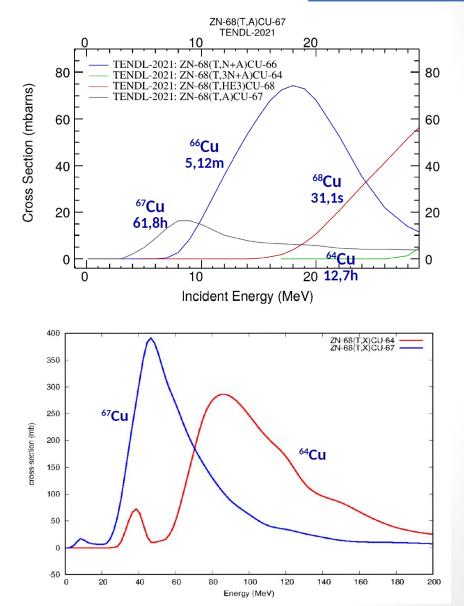
New setup for separation tests

- Electrolitic cell
- Electrode: backing Nb/Au
- Counter electrode: Pt



CUPRUM-TTD WP2 \rightarrow support to WP1 (LNL+FE): ZnO recovery processes – closing the Zn target material cycle WP1 and WP2 ZnO recovery process steps performed in different conditions: - Dissolution of pellet or powder in HCl or use of eluate from radiochemistry process Optimization experiments and analysis - Precipitation with NaOH at different temperatures of powders and targets still ongoing... - Evaporation and final calcination **First results:** Sample 212 Cold at 25°C at 18°C dissolution SEM analyses (from pellet) (from pellet) planned for ongoing SEM analysis 5 mm ZnO pellet density ~ 95% ZnO pellet density ~ 95% Sample 247 at 0°C at 0°C (from pellet) $Flakes \rightarrow$ irradiation and (from powder) radiochemical evaporation purification condition to be Modified evaporation planned optimized protocol **Recovery yield** ZnO pellet density ~ 84% 84.8%±3.6% at 0°C Sample 268 at 0°C irradiation and radiochemical From Zn-rich eluate from Starting material: Zn-rich purification radiochemical separation eluate from radiochemical blanned protocol (from powder) separation protocol (from Recovery yield ZnO pellet Recovery yield \rightarrow pellet) \rightarrow simulation of real exp ZnO pellet density ~ 65% 99% density ~ 55% to be optimized

CUPRUM-TTD WP3 (LNL-MI-PD): Irradiation, γ-spectr. and QC test


	WP3	
I Z 3 4 I Z 3 4 I Z 3 4 I Image: Sector and QC test I	iliana Mou aia Pupillo ucia De Dominicis uan Esposito	LNL
M10 M11	miliano Cazzola iancarlo Gorgoni	HSCDC
M13 M14 For rtadiochemical procedure optimization Al content (ppm)	uciano Canton uliia Lashko rancesca Barbaro	UNIPD INFN-PD
 selection of beam parameters suitable to yield small batches of ⁶⁷Cu/ ⁶⁴Cu based on theoretical calculations; 	lavia Groppi imone Manenti iorella M. Cagnetta 1ichele Colucci	UNIMI INFN-MI
^{nat} -ZnO target irradiations for thermomechanical stability tests Production Route Reaction Natural A	bundance Threshold ⁶⁷ Cu	Threshold ⁶⁴ Cu
3 irradiation runs on ⁷⁰ ZnO for first batches of ⁶⁷ Cu;	(MeV)	(MeV)
• 2-3 irradiations runs on ^{nat} Ni and ⁵⁹ Co with alpha beams for ^{61,64,67} Cu optimization production (xs $\frac{64Ni(\alpha,p)^{67}Cu}{70.72}$		23.49
meas. @ARRONAX) UNIMI+INFN-Mi $70 Zn(p,\alpha)^{67}Cu$ 0.6 $70 Zn(p,\alpha)^{67}Cu$ 0.6 $70 Zn(p,\alpha)^{67}Cu$ 0.6		23.83 23.83
• 2 irradiations runs on thick target of ⁶⁴ Ni for TTY, RNP, SA det. $70 Zn(d,\alpha n)^{67}Cu = 0.6$		26.42
• γ -spectrometry analysis for yield and RNP determination	45 10.12	7.9
$(3\times 2n(\gamma,\mathbf{p})^{\circ})^{\circ}Cu$ 18.		0
$^{68}Zn(d,^{3}He)^{67}Cu$ 18.4 Milestones and deliveries planned 4.0 $^{67}Zn(d,2p)^{67}Cu$ 4.0		10.3 17.91
$\frac{2\pi(4,2p)}{^{71}Ga(p,\alpha p)^{67}Cu} \xrightarrow{39.4}$		23.19
M9: natZnO targets irradiation for thermomechanical stability tests REACTOR RE	04 0	17.66
M9: ^{nat} ZnO targets irradiation for thermomechanical stability tests M10: ^{nat} ZnO targets irradiations for radiochemical separation optimization procedure M11: γ-spectrometry meas. to determine radiochemical procedure efficiency (^{nat} Zn/ ^{nat} Ni targets)		
M11: γ-spectrometry meas. to determine radiochemical procedure efficiency (^{nat} Zn/ ^{nat} Ni targets)		
M12: 3 irradiations on ⁷⁰ ZnO targets for ⁶⁷ Cu batches production (2 irradiations on ⁶⁴ Ni targets for ⁶⁴ Cu).		
M13: γ -spectrometry meas. to determine the activity and RNP of ⁶⁷ Cu produced by irradiation of ⁷⁰ Zn targets M14 xs measurements for alternative nuclear reaction route with alpha beams ⁶⁴ Ni(α ,p)67Cu (energy range 30 – 15 MeV)	SS	
M14 xs measurements for alternative nuclear reaction route with alpha beams ⁶⁴ Ni(α ,p)67Cu (energy range 30 – 15 MeV)		
as well as $^{59}Co(\alpha, 2n)^{61}Cu$		
D8: RNP determination of the produced ⁶⁷ Cu radionuclides from ⁷⁰ ZnO/ ⁶⁴ Ni		
D9: xs measurements determination with alpha beams for alternative ^{6x} Cu productions		

CUPRUM-TTD WP3 (MI): Investigations on alternative nuclear reaction routes with alpha beams ${}^{59}Co(\alpha, 2n){}^{61}Cu$

CUPRUM-TTD WP3 (PD): theoretical activities on alternative nuclear reaction routes to yield ${}^{67}Cu \rightarrow {}^{68}Zn(t,\alpha){}^{67}Cu$

- Started investigation of the triton production route: ⁶⁸Zn(t,α)⁶⁷Cu
- Comparison with the "standard" production routes: ⁶⁸Zn(p,2p)⁶⁷Cu, ⁷⁰Zn(p,α)⁶⁷Cu
- Bibliography study and data search
- Started simulation analysis with Nuclear Reaction Codes Talys
- Supervision of a master thesis on this topic

UniPD/INFN-PD

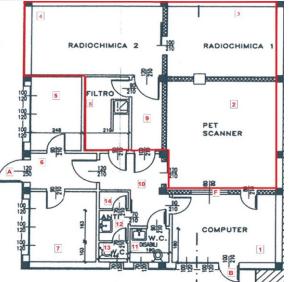
F. Barbaro L. Canton

Y. Lashko

CUPRUM-TTD WP4 (PD-IOV-CNR-UNIFE): RP activities (Synthesis of new

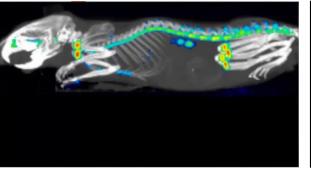
Cu conjugates)

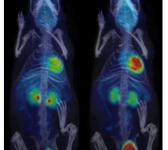
		1 01 100		/	Judy		1		مرامح			D10: NOTA-PSMA conjugates	
	1°	1st yea 2°	r 2023 3° 4	4°	2na y 1°2°	ear 2024 3°	+ 4°	1°	3ra ye 2°	ear 2025 3°	4°	D11 A reproducible method to obtain Cu-PSMA RPs with high radiochemical yield D12: Minimum activity and dimension of the tumour to obtain good imagin	ESS
WP4	RPs de	evelopr	nt, cellula	r, dosin	netric and	Imaging	studies					N PROPA	
M15 M16 M17 M18												 M15 : synthesis and characterizatoin of NOTA-PSMA conjugates M16 : Radiolabeling and stability studies of synthetized conjugates M17: Determination of specific binding of Cu-PSMA RPs to PSMA receptors naturally expressed by PCa tumor cells, uptake % and internalization M18 : Determination of cell absorbed dose and the surviving fraction after the treatment with 6xCu-NOTA RPs 	
M19												M19 : Determination of contrast, sensitivity, and spatial resolution of the SPECT/PET imaging of the produced 64-67Cu	
												Laura Melendez-A. IO Alessandra Zorz	N-PD OV OV
		2. 1										Bifunctional G4Cu-Radiolabeling Uptake/biodistribu Preclinical/clinical Diego Cecchin INFN	NIPD N-PD
			5-1				1					ligands tion of ^M Cu-RPs imaging ICM.	/IATE NR
T	-		File					7				and curvinal	NIFE N-Fe


- As the LARIM laboratory, built in the 1993, did not comply with current safety regulations on the use of experimental animals (2014) and on the use of radioactive material (2020), it was necessary to close it for ~ 1 year to be able to completely renovate it.
- Both civil/electric renovation works are about to be completed.
- The planned activity of synthesis of new conjugates (M15) will be started in the 4th quarter of 2024.

CUPRUM-TTD WP4 (PD-IOV-CNR-UNIFE): RP activities (Synthesis of new Cu conjugates)

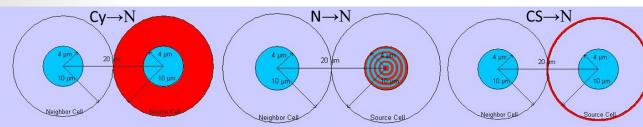
Feasibility of Radiopharmaceutical research studies within LNL→ LARIM (Padua Univ.)

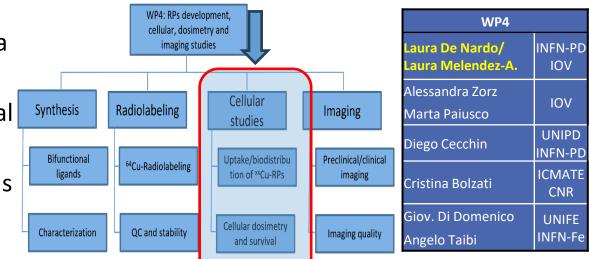

LARIM is located close to SPES building. Now under renewal of HVAC/Electric/safety plants (Dec. '23 –July '24) Expected to re-start first operations (new instr. included) on Sept/Oct '24



Last-generation small animal scanner: MILABS Vector 5 CT Set of phantoms with different geometries

HPLC instrumentation in the radiochemistry lab


Radiochemical and Biological hoods


CUPRUM-TTD WP4: Cellular dosimetry calculations

	1st ye	ar 2023	2nd year 2024				3rd year 2025				D10: NOTA-PSMA conjugates D11 A reproducible method to obtain Cu-PSMA RPs with high radiochemical yield
	1° 2°	3° 4°	1°	2°	3°	4°	1°	2°	3°	4°	D12: Minimum activity and dimension of the tumour to obtain good imaging
WP4	RPs developr	ent, cellular, de	osimetri	c and Ir	naging st	udies					- DDAGKEJJ
M15					_						M15 : synthesis and characterizatoin of NOTA-PSMA conjugates
M16											M16 : Radiolabeling and stability studies of synthetized conjugates
M17	1										M17: Determination of specific binding of Cu-PSMA RPs to PSMA receptors naturally expressed by PCa tumor cells, uptake % and internalization
M18			4	\sim							M18 : Determination of cell absorbed dose and the surviving fraction after the treatment with 6xCu-NOTA RPs
M19											M19 : Determination of contrast, sensitivity, and spatial resolution of the SPECT/PET imaging of the produced 64-67Cu

- Input data required: specific uptake and internalization in PSMA-positive and -negative PCa cells.
- MIRDCell calculations for ⁶⁷Cu and ⁶⁴Cu in spherical clusters of cells by assuming 100% subcellular distribution of radionuclides in Cytoplasm, Nucleus or Cell Surface provide preliminary information about dosimetric results to be obtained with a realistic distribution of RPs.

Source- Target configurations:

CUPRUM-TTD project 2025 FTE (subject to further refinement)

Zorz A. §

Lashko Y.

Bolzati C.***

Personnel and FTE distribution expected among units taking part

LNL	FTE	INFN-Fe	FTE	INFN-Mi	FTE
Esposito J. (R.NazLoc.)	0.50	Martini P. (R. Loc)	1.00	Groppi F. (Res. Loc)	0.40
Pupillo G.	0.25	Taibi A.	0.10	Manenti S.	0.25
Mou L.	0.20	Di Domenico G.	0.20	Cagnetta F.M.	0.45
Cisternino S.	0.70	Boschi A.	1.00	Colucci M.****	0.60
De Dominicis L.	0.40	Uccelli L.	1.00		1.70
Melendez-Alafort L.**	1.00	Marvelli L.	1.00		
Bello M.	0.80	Porto F.*	1.00		
Piteo G.	1.00	Speltri G.*	1.00		
Anselmi-Tamburini U.	0.20		6.30		
Cazzola E. #	1.00			TOTALE FTE	17.55
Gorgoni G. [#]	1.00	INFN-Pd	FTE		
Cecchin D. §	0.20	De Nardo L. (R. Loc)	0.80	-	
	7.25	Canton L.	0.20		
	- (de	Barbaro F.	0.60		
 studenti PhD associate INFN-F personale IOV associato LNL 	-e (da nov 2023)	Paiusco M. **	0.20		

0.20

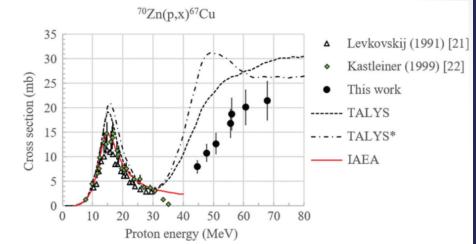
0.20

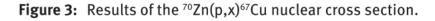
0.10

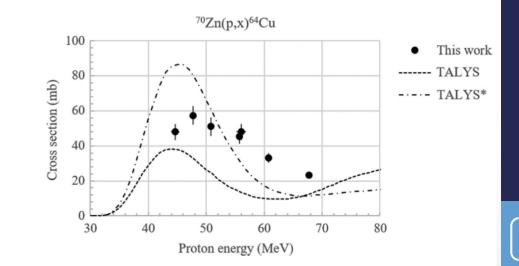
2.30

- *** personale CNR associato INFN-Pd
- **** studente PhD associato INFN-MI
- § personale UNIPD associato INFN-LNL
- # personale SCDCH associato INFN-LNL

-		
	19	


Summary overall budget request CUPRUM-TTD FY2025


Sezioni / Lab	Missioni	Consumo/ Altri consumo	Trasporti	Manutenzione	Inventario	apparati	Sp- servizi	Tot. per sez/lab	FTE previsto
LNL	7,0	10,0	0,0	0,0	0,0???	0,0	0,0???	17,0	7.25
FE	4,0	15,0	2,0	0,0	17,0	0,0	0,0	38,0	6.30
PD	1,0	7,0	0,0	0,0	0,0	0,0	0,0	8.0	2.30
МІ	8,5	8,0	8,5	4,0	0,0	0,0	0,0	29,0	1.70
TOTALE	20.5	40.0	10.5	4.0	17.0	0.0	0.0	92.0	17.55


***Consumables**: Solvents for HPLC analysis, reagents for stability test, buffers and cell culture media, Sep-Pack cartridges for radiopharmaceutical purification, plastic and glassware (4Keuro). 64Cu to radiolabel the developed Radiopharmaceuticals (2x10mCi) (3keuro)

Further developments or applications

- SPES-MED (Gr III, 2024-26)
- Nuclear cross section measurements
- ⁶⁸Zn,⁷⁰Zn(p,x)⁶⁷Cu,⁶⁴Cu for proton beams with energy higher than 70 MeV, in collaboration with the i-Themba facility (LNL team, 1 and 2 year);
- ⁷⁰Zn(p,x)⁶⁷Cu,⁶⁴Cu in the energy range 25-50 MeV at SPES (LNL team, 3 year)
- DECURTA DEvelopment of 67Cu-Radiopharmaceuticals for Theranostic of prostate cAncer (Bando IOV Ricercatori Sanitari 2023) PI Laura Alafort Melendez

Figure 4: Results of the ⁷⁰Zn(p,x)⁶⁴Cu nuclear cross section.

[Pupillo, G. et al. Radiochim. Acta 108, 593-602 (2020)]