

Advanced Dosimetry Methods and In-vitro Radiobiology of Ag-111 Labeled radiopharmaceuticals

- Principal Investigator Alberto Andrighetto, INFN-LNL.
- INFN Research Units

LNL, Padova, TIFPA, LNS, Pavia, Bologna.

- Research Fields Medical Physics, Radiation Detectors, Radiobiology.
- Duration 3 years.

Interdisciplinary WPs: WP1 & WP4

WP1

WP Leader: V. Di Marco (UNIPD) and D. Meniglio (UNITN)

WP Leader: S. Bortolussi (UNIPV)

WP1 will sum up all the preexisting activities leading to the **development of the radiopharmaceutical itself**, with the addition of the **tissue-mimicking scaffold production** to generate **more realistic 3D cell cultures** to be employed in the other work packages.

Work Package Aim

The whole set of experimental activities concerning **radiobiology**. In particular cell survival in 2D and 3D scaffolds will be evaluated. The acquired **radiobiological data** will be related to the absorbed **dose at cell** level, which will be calculated using Monte Carlo method, exploiting the available data about ¹¹¹Ag uptake *in vitro* and transporting the emitted radiation in simulated geometries that reproduce the monolayer or the **3D scaffold**.

Detector development WPs: WP2 & WP3

WP2

WP Leader: M. Lunardon (UNIPD)

Work Package Aim

This WP will be devoted to the **design**, **construction** and characterization of a new large-area detector for 2D β imaging at high resolution. This new device will take advantage of the monolithic silicon pixel technology developed recently for the ALICE experiment, namely the **ALPIDE**, the Monolithic Active Pixel Sensor of the new Inner Tracking System (ITS).

WP Leader: C. Sbarra (UNIBO)

WP3

This WP is aimed at the **design and development** of a planar scintigraphic system optimized for the incoming \mathbf{y} emission from the de-excitation of ¹¹¹Cd after the radioactive decay of ¹¹¹Ag. The design and construction of the imaging device will begin considering all its components, from detectors to data acquisition software.

> GAGG scintillators in slab and matrix produced by **EPIC-Crystals**

Istituto Nazionale di Fisica Nucleare

WP1 – Simulation of ¹¹¹Ag imaging

- 48 ore prima dell'esposizione ad Ag111, sono state allestite 3 capsule Petri seminate con 10.000 cellule per ogni condizione da testare;
- Ciascuna delle Petri è stata così trattata:
 - Sostituzione del terreno di coltura con terreno fresco;
 - > Aggiunta di Ag111 al terreno di coltura per esporre le cellule alla prestabilita attività di Ag111;
 - Incubare fino al time-point prestabilito.

WP4 – First cell survival test with ¹¹¹Ag **INFN**

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Dose and Survival Fraction Time Point 4d

Time Point 4d

Dose [Gy]	Survival Fraction [%]
_	100 ± 10
1.0 ± 0.1	52 ± 5
2.0 ± 0.2	52 ± 5
3.0 ± 0.3	48 ± 5
4.0 ± 0.4	42 ± 4
6.0 ± 0.6	15 ± 2

Dose and Survival Fraction Time Point 4d

WP4 – First cell survival test with ¹¹¹Ag

Low-Dose Hyper-Radiosensitivity

The LQ model describes cellular response to radiation above about 1 Gy. Below about 10 cGy, the cells show HRS, a phe- nomenon by which cells die from exces- sive sensitivity to low doses, due to rapid cell cycle arrest of irradiated cells in the G2 phase of the cycle. It can be char- acterized by a slope (α_s) that is consid- erably steeper than the slope expected by extrapolating back the response from high-dose measurements (α_r).¹

The IndRep model thus comprises two LQ models with different α sensitivities dependent on the dose given, merged into a single equation:

$$S(D) = exp(-\alpha_r \cdot D \cdot (1 + (\frac{\alpha_s}{\alpha_r} - 1)e^{-\frac{D}{D_c}}) - \beta \cdot D^2)$$

¹Joiner, M. & Van der Kogel, A. (2009). *Basic Clinical Radiobiology*, Great Britain, Hodder Arnold, 1993, pp.53-54. Caterina Spadetto, LT Fisica

The induced-repair model

WP4 – First cell survival test with ¹¹¹Ag (INFN) Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

Induced-repair model Fit

Fit parameters: $\Rightarrow \alpha_r = 0.01 \pm 0.11 \frac{1}{Gy}$ $\Rightarrow \alpha_s = 1.7 \pm 0.4 \frac{1}{Gy}$ $\Rightarrow D_c = 1.0 \pm 0.3 \text{ Gy}$ $\Rightarrow \beta = 0.05 \pm 0.02 \frac{1}{Gy^2}$

- **ALPIDE chips**: technology from HEP ٠
- 15 mm x 30 mm active area with 512 x 1024 pixels (typical size about 25 um)
- low-cost readout electronics using • commercial FPGA + custom PCB + dedicated Firmware
- modular system, scalable size, compact, • easy to use. With 8 chips an active plate of 60 mm x 60 mm can be easily assembled.

Cell culture in 3D scaffold slice administered with a pharmaceutical: fluorescence confocal microscopy (unlabeled) vs β -microdetector simulation using Geant4 (labeled with ¹¹¹Ag; pixel size 20 µm, noise 12%, 10⁶ CCK2 receptors [26], detector distance 10 µm).

ALPIDE Modelling

ALPIDE: silicon detector developed for particle tracking in ALICE (CERN). It is made of 1024x512 sensitive pixels of size (28x28) μm^2 .

Source Modelling

Radiation source: Scaffold \rightarrow Aqueous spherical cells (10 µm radius) dispersed in hydrogel matrix. Inside the cell volume, ¹¹¹Ag undergoes β decay.

- \rightarrow Scaffold
- different geometries
- different substrates

- → Traditional cell culture
- Petri dish
- Mylar (or other materials) substrate 11

Projection along X axis

1.0

0.8

FWHM: 3.58 mm

first measurements with ALPIDE (2023)

First measurements conducted with ALPIDE: dedicated **firmware** mounted on the detector and carried out preliminary **data acquisition** with ⁹⁰**Sr** source (roughly collimated).

New more precise assembly under construction. New better images with standard sources available soon

ALPIDE measurements in Pavia (4/2024)

Measurement performed with different quantities of ¹¹¹Ag and different test vial at LENA (Pavia) April 2024.

- 1kBq + Glass vial(d=0.96cm) (very low rate).
- 247kBq +Plastic vial(d=1.2cm) + solvent (0.4 ml) (low rate)
- 222kBq + Plastic vial(d=0.6cm) + solvent (0.4 ml) (low rate)
- 27.5MBq + Plastic vial(d=1.2cm) + solvent (0.4 ml) (high rate – measurement crashed)
- 3.5MBq + Plastic vial (d=1.2cm) + solvent (0.3 ml) (measurement crashed after two minutes). Vial used for the rest of the measurements.

d=1.2cm

ALPIDE Measurements in Pavia

- Measurement performed with ¹¹¹Ag A=3.5 MBq, inside a plastic vial with d=1.2cm, and solvent solution 0.3ml.
- PVC was cut in order to have an idea of the spatial resolution of the detector:
 - 1. Two holes d=2.2mm
 - 2. Large slot 7.8mm x 12.2mm, almost half of the chip exposed
 - 3. Small and big holes, d=1mm and d=2.2mm

Experiment. 111Ag, A=3.5MBq, 8 min, provetta plastica d=1.2cm, 2 holes (d=2.2mm

ALPIDE Measurements in Pavia

- Simulations on the same condition of the experimental measurements.
- Simulation of the beta spectrum emitted by the ¹¹¹Ag.
- Number of events simulated equivalent to the number of decays during the measurement

Two holes (d=2.2mm)

Simulation. ¹¹¹Ag, 1680e6 events, provetta plastica d=1.2cm, 2 holes (d=2.2mm)

Small and big holes (d=1mm and d=2.2mm)

Exp. and Sim. comparison

Higher

rate

Lower

rate

Mechanical design

- Useful help from Roberto Michinelli, from the Mechanical Design Service at INFN Bologna.
- Some administrative difficulty for buying ready-to-use parts (mainly from China)
- Possible option: linear gantry two-dimensional movement, parameters can be customized by the user. Produced by IGUS and FESTO (German companies).
- Waiting for the budget proposal.

Design of the PCB for the chips

- Chip mounting PCB hosting two ALPIDE • chips (basic module): design ready.
- Design of the mezzanine board still ۰ pending (to be defined next weeks).
- The bottom layer hosts the FPGA. A ٠ Raspberry Pi temporary option is also being evaluated

ŝ

PCB design

AD	MIRAL – GANTI	we are here												
ADMIRAL WP2			Year 1			Year 2				Year 3				Notes
				M9	M12	M15	M18	M21	M24	M27	M30	M33	M36	Required for
	WP2 - β-Imaging													
MS2.0	Development of the detector control firmware prototype	\rightarrow			•									MS2.3
MS2.1	Electronics and mechanics design	\rightarrow			0		0		•					MS2.3
MS2.2	Preliminary Monte Carlo simulations for mechanics and detector design	\rightarrow		0					•					MS2.3
MS2.3	Detector characterization and test with fluorescence							\rightarrow	0				•	MS4.4

Milestone MS2.1 :

• work ongoing, design for electronic board and mechanics expected on time

Milestone MS2.2:

• MC code already implemented and working. To be updated according with final E+M design

Milestone MS2.3 (2025):

• some first experimental test already done!

ADMIRAL – GANTT we are here **ADMIRAL WP2** Year 1 Year 2 Year 3 Notes M15 M18 M21 M24 M27 M30 M33 M36 M9 M12 M3 M6 Required for WP2 - β -Imaging Development of the detector control firmware prototype MS2.0 ۲ MS2.3 Electronics and mechanics design MS2.1 MS2.3 . Preliminary Monte Carlo simulations for mechanics and detector design MS2.2 MS2.3 . MS2.3 Detector characterization and test with fluorescence MS4.4

Activity planned for second semester 2024:

- finalize the design of board and FW for a 2 chips module (30 mm x 30 mm) and start the realization. This module can be easily duplicated to allow for a 2 x N chip configuration
- finalize the design of the final mechanics and start the realization
- finalize the MC tool
- more experimental test with the currently working prototype

Activity proposed for 2025:

- complete the realization of the prototype detector and the mechanics
- test and characterization of the prototype

NEN-PD -	– budget for 3 nd year	Requested	Granted		
		[k€]	[k€]		
Consumphilos	Mechanics	1	-		
Consumables	Electronics	4	-		
Shipping	Shipping of detectors from PD to test sites in Italy	2	-		
Travels	Travels for experimental activity	4	-		
	TOTAL INFN-PD	16	-		

Anagrafica 2024: M. Lunardon 0.6, S. Moretto 0.1, P.Lotti 0.3, L. Zangrando 0.2, Chiara Bonini (PhD) 0.5, Daiyuan Chen (PhD) 1.0, Jessica Delgado Alvarez (Assegno) 1.0 TOT = 3.7 FTE

Anagrafica 2025: M. Lunardon 0.5 (0.2 in SPES_MED), S. Moretto 0.1 (0.5 in SPES_MED), Jessica Delgado Alvarez (Assegno) 1.0 + possibile percentuale parziale di dottorando elettronica nel corso del 2025 TOT = 1.6 FTE

Collaborano inoltre: Piero Giubilato, Michele Giorato

Richieste servizi: 2/3 M.U. officina elettronica per realizzazione scheda, chip bonding e altre operazioni (TBD next con Marino)

Thank you for your attention!