
Seminar: Streaming data processing 
with Kafka in Kubernetes

Aida Palacio Hoz (aidaph@ifca.unican.es)
Host Alessandro Costantini

July, 1st 2024
INFN - CNAF

mailto:aidaph@ifca.unican.es


Index

● Contextualizing stream data processing
● Introduce use case I: Batch and stream processing with network traffic 
● Stream processing ingestion System: Apache Kafka

○ Benefits, components, architecture and security
●  Deploying Kafka in kubernetes

○ Testbed in K8s (WIP)
● Use case II:Accounting records (cASO) processing with Kafka

○ cASO & Kafka integration: Producer and Consumer configuration
○ Monitoring accounting records with Grafana (WIP)

2



Stream data processing

3



Stream data processing

● Many different sources generate massive or not 
massive data: structured, semi-structured, 
no-structured that needs a refactoring to provide deep 
insights for the user

● Stream processing bridges the gap between online 
data and fruitful information

Stream processing is a continuous method of ingesting, processing and 
analyzing data as it is generated 

Main Benefits

● React to anomaly events in real-time
● Adjust operations and resources as the actions occur

4



Example in stream processing:
Monitoring network traffic streams 



Monitoring network traffic 

● An Anomaly Instrusion Detection System (AIDS) can detect zero-day attacks 
Issue I: can also result in a high false positive and false negative rate

Collect and store the traffic for the application of ML techniques

● Issue II: An AIDS like zeek generates ~ 100.000 events per day in a “small” 
infrastructure

Automatize the ingestion and storing tasks with high-performance 
tehnologies

1

2

6



Platform Architecture for monitoring Network traffic

Based on Kappa Architecture

Stream 
processing
 ingestion 

system

Our Big Data Platform setup

DataLAB: dynamic data environments
7



Key in Stream processing: Event-driven architecture

Event-driven architecture is the design of a platform using technologies for handling 
event data, enabling real-time processing and response to events as they occur

Logs

8



Stream processing ingestion system:
Apache Kafka

9



Why using kafka for stream processing?

Benchmarking Message Queues in a single laptop with 16GB RAM and 512 GB SSD

10

https://www.mdpi.com/2673-4001/4/2/18


Streaming Ingestion System: Apache Kafka

Apache Kafka is a publish-subscribe message processing system of stream 
events where one event can be a type of action, an incident, a change in a 

system, etc.

● Kafka is based on the concept of commit logs, splitting the data into partitions for 
scaling-out systems. The events are modelled as key/value pairs: internally, they 
are a sequence of bytes, but externally are usually JSON, JSON schema or Avro.

● The translation between language and bytes is called serialization and 
deserialization.

● Log Aggregation: It can serve as a centralized log aggregation system for 
applications and microservices.

11



Benefits of Apache Kafka

● Log aggregation: integrate multiple data source in the same centralized 
system: Collect banch of different type of data

● Stream processing: ingest, store and process streams as the data is 
generated, at any scale

● Distributed system: fault tolerance, resilience and scalability
● Data persistence: store data at disk until it is served by the subscribers
● Consume “kafka” data from different applications

Examples: Monitoring operational data such as logs, anomaly detection, IoT, 
energy systems, hospitals history data, etc.

12



Apache Kafka: Components

● Broker: the main servers responsible for storing data and managing the requests. 
○ Multiple brokers compose a cluster where each broker can host one or more partitions 

depending on the leadership policy
○ Communicate with each other for data synchronization and leader election

● Topic: the object where data is stored, like a “queue”.
○ Producer publish data to topics and consumers load from them
○ Represents the factor of replication
○ Distributes often data among multiple partitions for scalability and redundancy

● Partition: The unit of parallelism in Kafka
○ Ordered and immutable sequence of records
○ Allows consumers to process data concurrently

● Producer: responsible of writing data to topics
○ Can also specify keys to control how data is distributed among partitions

● Consumer: “application” which load data from topics
○ Can specify offsets to track their progress reading messages

● Data Storage: “local” broker space where the partitions are stored  
13



Architecture Kafka architecture

Producer Consumer
kafka broker 1

Topic 1

Topic 2

Topic3

Producer Consumer
kafka broker 2

Topic 1

Topic 2

Topic3

Producer Consumer
kafka broker 3

Topic 1

Topic 2

Topic3

Kafka Cluster

register & load

register & load

register & load

register & load

writes

writes

writes

14



Apache Kafka: Security

Not recommended: only for testbeds: PLAINTEXT

The communication between 1. brokers or 2. broker - client might be: 

● Authenticated: with SSL or SASL
○ SASL mechanisms:

■ SASL/GSSAPI (Kerberos)
■ SASL/PLAIN: username - password
■ SASL/SCRAM-SHA-256 o SASL/SCRAM-SHA-512: username encrypted
■ SASL/OAUTHBEARER: OAuth2 but needs additional implementation

● Encrypted: Only SSL

BEST Solution: SASL (Auth) + SSL (Encrypt) = SASL_SSL protocol
15



Deploying Kafka in Kubernetes



Kafka in Kubernetes Testbed (WIP)

Motivation

● Integrate easily with our Big Data Platform 
(called DataLAB) based on Kubernetes

● Interesting to automatize the deployment of 
the Kafka cluster: define number of replicas 
on-demand deployment for specific use 
cases

Work in progress:

● Kafka Cluster testbed deployed as statefulset object
○ Works if manually predefine the amount of replicas
○ Many issues to scale up the cluster turning up “dynamic” quorum voters

17



Deploying Apache Kafka: key points 

● Replicated mode with data sync among the multiple brokers
● Each broker is exposed publicly to be reachable from external applications
● Scalable kafka can mean a cluster composed by few or lot of instances

○ Issue I: one public-ip per server
● Related to Issue I: Running behind a proxy

○ Issue II: Kafka traffic mode tcp instead of the common http in the proxy 
“needs tricky config”

● Security: Kafka native with SASL_SSL protocol instead of in the proxy
● Persistence space via cinder volumes

18



Our setup under K8s: traditional approach

…

Controller
Broker

Controller
Broker

Controller
Broker

Metadata 
Management 

+
Data completely 

synchronized

External 
connection to 
consume data

In replicated mode: each broker is a container, a virtual machine or a physical machine 
susceptible to failure (replica)

…

cinder-csi cinder-csi cinder-csi

19



Our setup under K8s: Solving Issue I

Dynamic DNS in the EGI Federated Cloud 
provides a unified, federation-wide dynamic 
support for VMs in EGI infrastructure.

EGI users can register DNS 
hostnames behind a given domain 
name and assign them to public IPs 
of their servers. 

Update DNS entries with:

curl 
https://kafka.datalab.ifca.es:7LSgckXsac@nsupdate.fedcloud.eu/nic/update
?myip=193.146.75.243 Proxy IP

Each broker reachable from outside

20



EGI DynDNS for Kafka cluster

App Kafka 
Client

(Producer- 
Consumer)

DynDNS

brokers?
kafka.datalab.ifca.es:9090

 kafka.datalab.ifca.es:9091,
      kafka.datalab.ifca.es:9092

21



 

kafka-0:9090 kafka-1:9091 kafka-2:9092

193.146.75.243

Our setup: Solving Issue II - Ingress-nginx controller

FRONTEND

BACKENDS

Mode 
TCP

HA + tcp mode support

22



Kafka Pods

Mode 
TCP

apiVersion: v1
kind: ConfigMap
metadata:
  name: ingress-nginx-tcp
  namespace: ingress-nginx
data:
  "9090": kafka/kafka-headless:9090
  "9091": kafka/kafka-headless:9091
  "9092": kafka/kafka-headless:9092

KAFKA_LISTENERS=SASL_SSL://0.0.0.0:909$KAFKA_NODE_ID

ConfigMap in the ingress-nginx 
controller to redirect external TCP 
traffic to internal broker ports

 

kafka-internal-0:9090 kafka-intenal-1:9091 kafka-internal-2:9092

23



Manage Security at Kafka: SASL + SSL

SSL: multidomain CA cert and Certs + Keys for each kafka instance *.datalab.ifca.es 

 

controller.quorum.voters=0@kafka-0.kafka-headless.kafka.svc.cluster.local:29093,1@kafka-1.kafka-headless.kafka.s
vc.cluster.local:29093,2@kafka-2.kafka-headless.kafka.svc.cluster.local:29093
listeners=SASL_SSL://0.0.0.0:9090,CONTROLLER://172.16.44.141:9094
advertised.listeners=SASL_SSL://kafka.datalab.ifca.es:909$KAFKA_NODE_ID
inter.broker.listener.name=SASL_SSL

SASL: Current PLAINTEXT -> Testing OauthBearer (Merge with the Datalab AAI)2

1

kafka-broker.properties

kafka-0 kafka-1 kafka-2 24



Mode 
TCP

 

kafka-internal-0:9090 kafka-intenal-1:9091 kafka-internal-2:9092

 

kafka.datalab.ifca.es:9090 kafka.datalab.ifca.es:9091

Mode 
TCP

…

kafka.datalab.ifca.es:9092

Producer
/

Consumer

25



Accounting records (cASO) processing 
with Kafka 

w/@Alessandro Costantini



Accounting records (cASO) processing with Kafka

New custom messenger 

Kafka for sending accounting 

records and persisting data

Issues with current messengers: 

● Lack of information in the APEL 
accounting: GPU and Storage 
accounting

● Real-time streaming data

27



cASO & Kafka Integration: Kafka configuration

[...]

listener.name.sasl_ssl.plain.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModul
e required \
  username="admin" \
  password="4dmin-s3cr3t" \
  user_admin="4dmin-s3cr3t" \
  user_testuser="t3st123456789" \
  user_casouser="H2T}f]H12345";
[...] kafka-broker.properties

28



cASO & Kafka Integration: cASO configuration (Producer)

New Messenger in Kafka language means a new producer that collects the 
records after the caso extraction and “be stored” until a third-party application, 
such as Logstash or Grafana Loki consumes those records

messengers = kafka

[kafka]

brokers = 
kafka.datalab.ifca.es:9090,kafka.datalab.ifca.es:9091,kafka.datalab.ifca.es:9092

topic = test-caso

username = casouser

password = H2T}f]H12345

/etc/caso/caso.conf

29



cASO & Kafka Integration: cASO configuration (Producer)

self.brokers = CONF.kafka.brokers
self.topic = CONF.kafka.topic
self.username = CONF.kafka.username
self.password = CONF.kafka.password
[...]
producer = Producer(**conf)
"""Push records to kafka"""
for record in all_caso_records:
    #serialization of record
    rec=record.serialization_message()
    try:
        producer.poll(0)
        producer.produce(self.topic, value=json.dumps(rec).encode('utf-8'),
                        callback=delivery_report)

Kafka Messenger

Producer Config in cASO

30



Producer

Consumer

Consume cASO records from Kafka

GPU

Floating 
IP

Compute

Volume

records

topic-
caso

clients:
- url: http://grafana.ifca.es:3100/loki/api/v1/push
[...]
- job_name: kafka-datalab

kafka:
  brokers:
    - kafka.datalab.ifca.es:9090
    - kafka.datalab.ifca.es:9091
    - kafka.datalab.ifca.es:9092
  topics:
  - test-caso

[...] Consumer Config in Promtail

31

http://grafana.ifca.es:3100/loki/api/v1/push


Monitoring Accounting data with Grafana (WIP)

32



Example Use case I: Monitoring Network traffic events 
from an AIDS

33



Seminar: Streaming data processing 
with Kafka in Kubernetes

QUESTIONS?
Aida Palacio Hoz (aidaph@ifca.unican.es)

Host Alessandro Costantini
Thanks to:

- SDDS department
- BDP working group

- Luca Dell’Agnello for hosting me :)
July, 1st 2024
INFN - CNAF

mailto:aidaph@ifca.unican.es

