Event: 1512463585 2017-07-16 14:42:56 CEST

b-jet tagging: efficiency measurement and impact on $HH \rightarrow bb\gamma\gamma$ analysis

UNIVERSITÀ **DEGLI STUDI DI MILANO**

Milano, Meeting di gruppo, 27 Giugno 2024

Elena Mazzeo, Leonardo Carminati, Stefano Manzoni, Ruggero Turra

Outline: outlook for HH searches in Run 3

Expected SM HH:

4000

 $\sim 10^4$

~105!

27 June 2024

b-jet tagging: efficiency measurement and impact on $HH \rightarrow bb\gamma\gamma$ analysis

• Impressive sensitivity to HH production from the new batch of Legacy Run 2 HH analyses, that was finalized in the past months!

> $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, and $b\bar{b}b\bar{b}$ (main channels), + $b\bar{b}ll$ and multi leptons + **combination**!

HH combination

	36.1 fb ⁻¹	140 fb ⁻¹
Expected limit on µ _{нн}	10	2.4

Improvement of a **factor**

> 4 w.r.t. partial Run 2!

- Run 3 represents a unique opportunity for HH searches!
 - High momentum and increasing interest from many teams / institutions!
- There are many aspects that we can (and should) explore to try and **reach** a first hint of observation of HH production already with the full Run 3 dataset.

One of them is the improvement in object identification, especially *b*-tagging!

Outline: state of the art b-tagging in ATLAS and HH searches

• A new generation of GNN-based b-tagging algorithms was developed in ATLAS.

- DL1r).
- Expected to **sharpen the sensitivity** of the new di-Higgs analyses!

- The most sensitive channels (= $bb\gamma\gamma$, $bb\tau\tau$, and *bbbb*) have **at least 2** *b*-jets in the **final state**.
- Impressive performances in the $HH \rightarrow 4b$ analysis by <u>CMS</u> after the **adoption** of their new ParticleNet-based tagger already in Run 2!

		-	_	
	35.9 fb ⁻¹	138 fb ⁻¹		
Expected limit on μ_{HH}	114	5.1		>

× 11 (!) improvement, after factoring out the factor 2 improvement from the increase in luminosity.

• Before being able to employ the new GN2 tagger in ATLAS physics analysis, we need to calibrate these algorithms (i.e. measuring their efficiency on real pp collision data)!

- efficiency on data.
- analysis.

27 June 2024

Boost in **performances** of the new *b*-tagging algorithms w.r.t. the **older RNN-based generation** used in Run 2 (e.g.

In this presentation I will try to give an overview of the new GN2 tagger and present the measurement of the b-tagging

- Finally, I will try to estimate the impact of adopting the new GN2 tagger, using, as baseline, the Run 2 Legacy $HH \rightarrow bb\gamma\gamma$

GN2: state of the art *b*-tagging in ATLAS

b-tagging with GN2: inputs & training

- GN2 sees a jet as collection of tracks + some **global information** (= such as its η and ϕ coordinates)!
- Trained to **understand** the **internal structure** of the jets, thanks to relying on low-level information about tracks, impact parameters, and hits.

27 June 2024

together to define a
nt for *b*-tagging!

$$\log \frac{p_b}{f_c p_c + f_\tau p_\tau + (1 - f_c - f_\tau) p_u}.$$

By cutting on the D_b discriminant we can define WPs characterized by a given *b*-tagging efficiency. - Measured inclusively on a $t\bar{t}$ MC sample.

Two **auxiliary tasks**:

- 1. **Prediction** of the physics process initiating the tracks.
- 2. Grouping the tracks into vertices!

📩 Help convergence of the main task.

b-tagging with GN2: performances on MC

27 June 2024

The performances of GN2 can be compared with those from the previous taggers by checking the **light** and *c*-jet rejection, given a determined b-jet efficiency.

The new version of GN2 (= GN2v01) is also optimized to reject hadronic τ s!

Expected performances at a low p_T regime

Jets from $t\bar{t}$ sample, 20 GeV < p_T < 250 GeV

• Light jet rejection: up to a factor X 2 improvement w.r.t. DL1d!

• *c*-jet rejection: up to a factor X 4 improvement w.r.t. DL1d!

• τ -jet rejection: up to a factor X 7.5 improvement w.r.t. DL1d!

Calibration of the GN2-based *b*-tagging efficiency

b-tagging efficiency measurement: outline

- Our taggers (including GN2) are optimized on MC events.
- However, MC samples may be affected by imperfections in the modelling of the physics process, or in describing the detector response.
 - The **efficiency** has to be measured on **real** *pp* **collision data**!
 - How?
 - 1. Select a **pure sample of** *tt* **events** in data, where **both top** quarks **decay** leptonically.
 - - Provides a sample **enriched** in true *b*-jets, thanks to the $t \rightarrow Wb$ decay.
 - Can be easily triggered upon when considering leptonic W decay.
 - 2. Identify **backgrounds** and estimate **systematic uncertainties**.
 - - Our leptonic $t\bar{t}$ signal includes two *b*-jets and two leptons in the final state. - The fake *b*-jet backgrounds are estimated with the help of CRs, enriched
 - in *ll*, *bl*, *lb* events.
 - 3. Extract *b*-tagging efficiency (= selected *b*-jets / all *b*-jets) via a maximum**likelihood fit** of the discriminant distribution **to data**, as a function of the leading and subleading jet p_T and b-tag efficiency WP.

Scale factors = *b*-tagging efficiency in data / *b*-tagging efficiency in MC.

27 June 2024

b-tagging efficiency measurement: event selection

Event selection

- OR of single-lepton (electrons or muons) triggers.
- Exactly two reconstructed opposite charge and different flavor leptons (e and μ) with $p_T > 27$ GeV. —>
- $m_{e\mu} > 50 \text{ GeV.} \longrightarrow \text{Reduces background from } Z \rightarrow \tau^{lep} \tau^{lep} \text{ events.}$
- Exactly two jets with $p_T > 20$ GeV. \longrightarrow Reduces background from single W production and light jet production from ISR and FSR.

27 June 2024

b-jet tagging: efficiency measurement and impact on $HH \rightarrow bb\gamma\gamma$ analysis

Main backgrounds: W+jets, Z+jets, Single top production, and di-boson production.

Reduces background from $Z \rightarrow \ell \ell$ events.

Selected events are then split in **bins** of the **leading** and **subleading jet** p_T , and then further in a **SR** (enriched in events with two true *b*-jets) and in three **CRs** (enriched on *bl*, *lb*, *ll* events), based on the variables $m_{j_1\ell}$ ad $m_{j_2\ell}$.

> • The **two jets** are paired with the **two leptons**, in the configuration that minimizes $m_{j_1\ell}^2 + m_{j_2\ell}^2$ (= penalizes configurations where $m_{j_1\ell}$ and $m_{j_2\ell}$ are asymmetric). m_{jl} is a proxy of the **top mass**! \longrightarrow For true *b*-jets, $m_{jl} \leq m_t \approx 172.5$ GeV.

• In all regions, $m_{j_1\ell}$ > 20 GeV and $m_{j_2\ell}$ > 20 GeV.

- SR = $m_{j_1\ell}$ < 175 GeV and $m_{j_2\ell}$ < 175 GeV.
- $CR_{BL} = m_{j_1\ell} < 175 \text{ GeV} \text{ and } m_{j_2\ell} \ge 175 \text{ GeV}.$
- $CR_{LB} = m_{j_1\ell} \ge 175 \text{ GeV} \text{ and } m_{j_2\ell} < 175 \text{ GeV}.$
- $CR_{LL} = m_{i,\ell} \ge 175 \text{ GeV}$ and $m_{i,\ell} \ge 175 \text{ GeV}$.

b-tagging efficiency measurement: fitting strategy

	Run 2
Bins in pT(j1) and pT(j2)	[20, 30, 40, 60, 85, 110, 140, 175, 250, 400
GN2v01 eff. WPs	[90%, 85%, 77%, 70%, 65%]
Tatal mumbers of hims	(9 x 10) / 2 × (3 + 1 × 6 × 6) = 1755 total bi
lotal number of bins	$(9 \times 10) / 2 \times (6 \times 6) = 1620$ SR bins.

27 June 2024

b-tagging efficiency measurement: fitting strategy

Extended binned likelihood:

$$\mathscr{L}(\nu(\theta)) = \prod_{i=1}^{N} \frac{\nu_i^{n_i}}{n_i!} e^{-\nu_i} \longrightarrow N = \text{total number of} -\nu_i (n_i) = \text{observed (e}$$

 T^n , and receives contributions from each of the four flavor fractions bb, bl, lb, and ll.

 $\nu_{CR}(T^m, T^n) = c_{bb}^{m,n} \nu_{CR,bb}^{m,n} + c_{bl}^{m,n} \nu_{CR,bl}^{m,n} + c_{lb}^{m,n} \nu_{CR,lb}^{m,n} + c_{ll}^{m,n} \nu_{CR,ll}^{m,n} + c_{ll}^{m$

• In the SRs, the expected number of events depend also from the b-tagger eff. WP O^k (O^p) of the (sub) leading jet! $+c_{bl}^{m,n}\nu_{SR,bl}^{m,n}\cdot\mathscr{P}_b(O^k | T^m)\cdot\mathscr{P}_l(O^p | T^n)$ $+c_{lb}^{m,n}\nu_{SR,lb}^{m,n}\cdot\mathscr{P}_{l}(O^{k}|T^{m})\cdot\mathscr{P}_{b}(O^{p}|T^{n})$

 $+c_{ll}^{m,n}\nu_{SR,ll}^{m,n}\cdot \mathscr{P}_{l}(O^{k}|T^{m})\cdot \mathscr{P}_{l}(O^{p}|T^{n})$

- $c_{ii}^{m,n}$ = unconstrained NPs. - $\mathcal{P}_{b}(O^{k} | T^{m}) = \mathsf{POIs}.$
- $\mathcal{P}_l(O^k | T^m)$ = constant param.

27 June 2024

b-jet tagging: efficiency measurement and impact on $HH \rightarrow b\bar{b}\gamma\gamma$ analysis

of bins.

expected) number of events in the i-th bin.

In the CRs, the expected number of events depend from the leading jet p_T bin T^m and the subleading jet p_T bin

- $\nu_{CR(SR)ij}^{m,n}$ = constant param. \rightarrow Yields of events with true jet flavors *i* and *j* in each p_T bin (from MC). \longrightarrow Correction factor for the yields of the different flavor fractions in each p_T bin. \longrightarrow Probability that a true b-jet with p_T bin = T^m is selected by the O^k eff. WP. Probability that a true light / c-jet with p_T bin = T^m is selected by the O^k eff. WP.

- As a first step, we had a look at the **data / MC agreement**, for some interesting variables in our analysis (= leading and subleading jet's η and p_T , the m_{il} variable, and the GN2 discriminant).
- For the MC, we tried to look at the different contributions from both the **physics process decomposition** ($= t\bar{t}$, single top, Z+jets, W+jets, and di-boson samples), and the jet's flavor decomposition.

27 June 2024

b-jet tagging: efficiency measurement and impact on $HH \rightarrow bb\gamma\gamma$ analysis

Other variables are shown in backup slides!

b-tagging efficiency measurement: Run 3 (2022 data)

- The shape of the GN2 discriminant, split between the contribution to each true jet flavor fraction for the leading and subleading jet (= bb, bl, lb, ll), is the final observable in our fit!
- and to the Scale Factors.

b-tagging efficiency and SFs as a function of the jet p_T , for the 77% eff. WP of GN2

• After extracting the histograms of the GN2 discriminant in the analysis regions, we are ready to look at the b-tagging efficiency,

b-tagging efficiency measurement: systematic uncertainties

The following systematic uncertainties (that may affect our results) are considered in the fit.

Almost all included for the Run 3 results!

		 Alternative PDF set correlate between NNPDF30_nlo_as_ 	
	Modelling uncertainties	 Matrix element unc. for tt-ba 	
Theory		• Parton shower for tt-bar (diffe	
		 Modelling unc. for single top 	
	Scale variations, PDF	• Scale and PDF + a_s for tt-bar	
	variations, ISR & FSR	 ISR and FSR for tt-bar and sir 	
		 Pile-up modelling; 	
		 Electron and muon trigger ef 	
		• Electron energy scale and res	
	Physics objects,	 Jet energy scale and resoluti 	
Exp.	triggers, pileup.	 Jet vertex tagger efficiency; 	
		 Muon energy calibration and 	
		 Missing energy reconstructio 	
	Custom	• Fake lepton correction.	
	Custom	• Light flavor jet mis-tagging	

27 June 2024

- d tt-bar and single top (difference) _0118 and PDF4LHC).
- r (hdamp and pthard parameters).
- erence between Pythia8 and Herwig7).
- difference between DS and DR).
- and single top.
- ngle top.
- fficiency;
- solution;
- For now excluded, since negative ion; weights variations cause problems in the fit stability (= under investigation).
- identification;
- n.
- efficiency.
- *b*-jet tagging: efficiency measurement and impact on $HH \rightarrow bb\gamma\gamma$ analysis

- We assigned a **preliminary 100%** uncertainty on the **light jet** efficiency (= used as input in our fit).
 - **Strong impact** at low p_T in high efficiency bins (e.g. 90%) WP).
- Will change, once the light jet mis-tagging efficiency **measurement** is **ready**!

Estimating the impact of GN2-based b-tagging for $HH \rightarrow b\bar{b}\gamma\gamma$ analysis

b-tagging in the $HH \rightarrow bb\gamma\gamma$ analysis

b-jet requirements for the $HH \rightarrow bb\gamma\gamma$

• Run 2: exactly 2 *b*-jets using the 77% efficiency WP of DL1r.

• Run 2 + partial Run 3: exactly 2 *b*-jets using the 77% efficiency WP of GN2.

Question: how do we quantify the impact of **improved fake** *b*-jet rejection in the $HH \rightarrow b\bar{b}\gamma\gamma$ analysis?

1. Estimate the **contribution of bkg. events** with **true light** or *c* -flavor jets misidentified as b-jets.

- Replacing the DL1r 77% WP with the GN2 77% WP will help to suppress the fake *b*-jets backgrounds!
- 2. Given the 77% signal efficiency, **rescale** the **contributions** of **each true jet flavors** with the ratio between the DL1r efficiency and the GN2 efficiency.

Estimated using ROC curves of the two taggers!

3. Estimate the **new bkg. yields**, and evaluate the **impact** on the **upper limits** on the HH signal strength.

27 June 2024

 $\gamma\gamma$ +jets true jet flavor fractions.

c- and light jet rejection with DL1r and GN2

Tagger bkg. efficiency @ 77% *b*-jet eff. WP

	c-jet efficiency	Light jet efficiency		
DL1r	1/6 = 16.6%	1/300 = 0.33%		
GN2	1/12 = 8.3%	1/700 = 0.14%		

- Given the selected events with **two reco** *b*-**jets**, we can evaluate the ratio of the efficiency between DL1r and GN2 WPs for each true flavor fraction.
- When rescaling the true jet flavor contributions with the GN2 / DL1r efficiency ratios, both the true jet flavor composition of the selected (bkg.) events will change, and the overall yields in each analysis category! — Will have an impact on the HH significance!

The True *bb* / All purities for each background samples in each analysis categories are available in backup slides!

True jet flavor	€ (2 reco b∣true ij): GN2	e (2 reco b true ij): DL1r
bb	77% × 77% = 59%	77% × 77% = 59%
bc	77% × 8.3% = 6.4%	77% × 16.6% = 12.8%
bl	77% × 0.14% = 0.11%	77% × 0.33% = 0.25%
СС	8.3% × 8.3% = 0.69%	16.6% × 16.6% = 2.76%
cl	8.3% × 0.14% = 0.01%	16.6% × 0.33% = 0.05%
	0.14% × 0.14% = 0.0002%	0.33% × 0.33% = 0.001%

27 June 2024

Background contribution for $HH \rightarrow bb\gamma\gamma$

Ratio of the expected bkg. yields for each analysis category after replacing the DL1r WP with GN2 WP.

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4	$bar{b}\gamma\gamma$ preselection
Samples								
ggH	0.899244	0.914420	0.959389	0.767223	0.909515	0.958215	0.902911	0.838291
ttH	0.867658	0.864079	0.863263	0.887443	0.900553	0.906607	0.900554	0.912129
ZH	0.968675	0.969956	0.978217	0.959593	0.969878	0.970003	0.978440	0.943449
Other H	0.862848	0.836129	0.856764	0.853913	0.852318	0.917792	0.970914	0.839883
γγ+jets	0.833301	0.880967	0.907797	0.756044	0.812988	0.842126	0.817748	0.689437

Bkg. yields reduced of a factor of up to 25% (depending on the samples and the category)!

27 June 2024

- 1. **Resonant** background Estimated using MC.
 - Single Higgs production + jets, where $H \rightarrow \gamma \gamma$.
 - Main contribution from ggH, ttH and ZH production modes.
- 2. Continuum background \longrightarrow Estimated using data (mostly from $m_{\gamma\gamma}$ sidebands region). Main contribution from di-photon production + additional jets.
 - Single photon + jets and multijet background (where 1 or 2 jets are misidentified as photons) account for < 15%.

Caveat:

- The GN2 / DL1r expected yield ratio for the continuum bkg. was estimated relying on the true flavor fractions extracted from the $\gamma\gamma$ +jets sample.
- This ratio is however used to rescale the continuum bkg. yields evaluated in data (following the recipe of the $HH \rightarrow bb\gamma\gamma$ analysis).

Expected improvement on the statistical results

• Expected stat. only exclusion limits are set on the **di-Higgs signal strength** at **95% CL**.

Expected upper limits on $\mu(HH)$ @ 95% CL.

	Nominal (DL1r)	Improved (GN2)		on
µ(HH)	4.86	4.70	>	

• We can also derive expected 68% and 95% confidence intervals for κ_{λ} and κ_{2V} via a profile log-likelihood (-2 Δ ln(L)) scan.

27 June 2024

b-jet tagging: efficiency measurement and impact on $HH \rightarrow b\bar{b}\gamma\gamma$ analysis

We observe a **3.3% improvement** in the expected stat. only limit μ (**HH**), coming from the new bkg. rejections only!

- No retraining of the Legacy BDT or redefinition of the categories involved here. ——> This improvement is very conservative!
 - We also made assumption on the true flavor fraction composition from the MC, and on the GN2 / DL1r bkg. rejection estimated from MC. Reasonable as long as Scale Factors for DL1r and GN2 are similar.

- Replacing the bkg. rejection efficiency of DL1r 77% WP with those of GN2 77% WP seems to **improve** the **expected constraints** on κ_i by a relative factor of 2.3%.
- The improvement for the κ_{2V} constraint is a bit **smaller** (1.1%).

Summary

- A new generation of GNN-based b-tagging algorithms was developed in ATLAS.
 - The GN2 algorithm is the current state of the art!
 - We expect at least a factor x 2 of improvement in fake b-jets background rejection w.r.t. the older RNN-based taggers adopted in Run 2 (e.g. DL1r).
- We look forward to adopting the new tagger in our di-Higgs analyses (= especially in the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, and $b\bar{b}b\bar{b}$ channels)!
- Before being able to apply the new algorithms in physics analysis, we need to **calibrate** it! Calibration of the GN2 WPs = measuring the (mis-)tagging efficiency for b-jets, c-jets and light jets in real data!
- I have been working on the **measurement** of the *b*-jet efficiency, using **di-leptonic** *tt* **events!**

- Efficiency measurement with 2022 data \sim ready!
 - A first version of the efficiency and the corresponding SFs is ready, together with the systematic uncertainties!
- Still working through our to-do list for Run 2 and 2023 data.

We have nominal results for Run 2 (no systematic yet), and finalizing sample production for 2023!

Three different analyses (proceeding in parallel), using each other's results as inputs.

> Timescale for releasing the recommendations: \sim 1 month!

Summary

analysis.

- The analysis requires **exactly 2** *b*-jets selected by the **77% WP** of the **DL1r tagger**. - The pseudo-continuous b-tagging DL1r scores for the jets are used as input for
- defining the analysis categories!
- We tried to adjust the expected background yields in the Legacy $HH \rightarrow bb\gamma\gamma$ analysis, according to the expected fake b-jet rejection power of the GN2 77% WP compared with the DL1r 77% WP, and we repeated the statistical analysis to extract the expected results. We observed a \sim 3% improvement, coming from the new bkg. rejection only! _ - Caveat: we are being very conservative in this estimation.

• We are only studying the effect of the improved bkg. rejection!

Since our analysis is statistically limited and our signal includes 2 true *b*-jets, using a higher eff. WP (e.g. 90%) will bring a much stronger improvement!

• New Run 2 + partial Run 3 $HH \rightarrow bb\gamma\gamma$ analysis is already testing the GN2 algorithm!

27 June 2024

• Finally, I have tried to perform a qualitative estimate of the improvement from adopting the GN2 tagger in the $HH \rightarrow bb\gamma\gamma$

Thank you for your attention!

η and p_T of the leading and subleading jets, showing the contribution from each physics process

η and p_T of the leading and subleading jets, showing the contribution from the true jet flavor fractions

Lepton + jet invariant mass for leading and subleading jets

b-tagging efficiency measurement: Run 3

b-tagging SFs as a function of the jet p_T , for the 65, 70, 77, 85, and 90% eff. WP of GN2

27 June 2024

b-tagging efficiency measurement: Run 3

Relative uncertainty to the b-tagging SFs as a function of the jet p_T , for the 65, 70, 77, 85, and 90% eff. WP of GN2

27 June 2024

b-, c, and light jet scale factors for DL1r and GN2

- rejection curves (as a function of the b-jet efficiency) evaluated using MC samples.
- factors for b-, c, and light jets are similar, between DL1r and GN2!

DL1r (Rel. 21)

GN2 (Rel. 25)

27 June 2024

• In order to estimate the ratio between the expected yields from the DL1r and GN2 77% eff. WPs, we relied on the c- and light-jet

• Trusting the ratios that we used to rescale the expected yields is a reasonable assumption, as long as the MC \rightarrow Data efficiency scale

- MC \rightarrow Data efficiency scale factors for *b*-jets are similar, between DL1r and GN2!
 - Very close to 1 in both cases!
- For light jets, the scale factors are close to 1.3 for GN2, while they are closer to 1 in the DL1r case.
 - The two sets of Scale Factors differ of a factor between 10 and 20%, but they are compatible within their systematic uncertainties!

True bb / All purities in bkg. samples for the $HH \rightarrow bb\gamma\gamma$ analysis

True bb / All purities (with DL1r-based b-tagging)

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4	$bar{b}\gamma\gamma$ preselection
Samples								
ggH	0.843846	0.854195	0.929171	0.661551	0.848940	0.925240	0.845122	0.762660
ttH	0.741365	0.733432	0.734020	0.781049	0.805715	0.817540	0.805060	0.829875
ZH	0.954499	0.956188	0.968055	0.938304	0.951592	0.952504	0.962574	0.915358
Other H	0.757329	0.705959	0.736176	0.742982	0.734976	0.862540	0.957203	0.736247
γγ+jets	0.732071	0.801465	0.854433	0.625333	0.710732	0.754355	0.711985	0.543612

- The background samples for the $HH \rightarrow bb\gamma\gamma$ analysis include both true b-jets and c and light jets mistagged as b-jets.
- Given the 77% efficiency WP, the true bb purity in each sample strongly depends from the analysis category (= the pseudo-continuous DL1r score is used as input for the category definition).

- Resonant background
 - Between 60% and 95%, depending on the category and the production mode.
 - ZH has the highest purity (above 90% in each category!).
- Continuum background

Between 60% and 85%, depending on the category.

True bb / All purities in bkg. samples for the $HH \rightarrow bb\gamma\gamma$ analysis

True bb / All purities (with GN2-based b-tagging)

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4	$bar{b}\gamma\gamma$ preselection
Samples								
ggH	0.938394	0.934139	0.968502	0.862267	0.933399	0.965587	0.935997	0.909779
ttH	0.854443	0.848802	0.850285	0.880112	0.894690	0.901759	0.893961	0.909822
ZH	0.985365	0.985805	0.989611	0.977814	0.981146	0.981960	0.983784	0.970225
Other H	0.877708	0.844318	0.859252	0.870091	0.862325	0.939799	0.985878	0.876607
γγ+jets	0.878519	0.909757	0.941216	0.827112	0.874222	0.895774	0.870666	0.788487

- After replacing the bkg. efficiency for DL1r 77% WP with the estimated bkg. efficiency for the GN2 WP, we could improve the overall True *bb* purities in each analysis category, and for each sample!
- The margin of improvement depends from both the analysis category and the particular bkg. process.

- Resonant background
 - \rightarrow Improvement within 10% and ~ few %.
 - The new purity is always above 85% for each analysis category.
- Continuum background
 - Improvement between 10% and 20%.
 - The new purity is always above 80%!

b-tagging efficiency measurement: Run 2 VS Run 3

27 June 2024

b-tagging efficiency measurement: DL1d tagger, Run 2

27 June 2024

