

1

Attività 2024 Richieste 2025

ALICE 3-RICH project

Rome, 19/07/2024

Giacomo Volpe (University & INFN, Bari) On behalf of the ALICE 3 RICH WG

Italian participating institutes

In collaboration with LNGS-NOA for the packging and with FBK for the SiPM R&D

ALICE Salerno group joined to the project

Testing SiPMs for ePIC dRICH Cosmic ray telescope

NEMES Lab (I): **prototipazione e produzione, su piccola scala, di schede elettroniche multistrato**

Prototipi realizzati negli ultimi mesi

Reaching low temperature with liquid N

ALICE 3 - RICH

Extend electron and charged hadron ID at momenta higher than the TOF range, e.g in the barrel: e/π : 0.5 - 2 GeV/c π /K : 2.0 - 10.0 GeV/c $K/p : 4.0 - 16.0$ GeV/c

Barrel RICH: aerogel Cherenkov radiator (2cm, n=1.03) + 20 cm expansion gap + SiPM photon detector Forward RICH: idem, but aerogel n = 1.006

Results from "fast" parametric simulation, assuming a Cherenkov angle resolution at saturation of 1.5 mrad and a TOF time resolution of 20 ps

ALICE 3 - RICH

z[m]

ALICE 3 - RICH

The Cherenkov radiator comprises hydrophobic aerogel tiles (15 \times 15 \times 2 cm³ refractive index *n* = 1.03)

The photodetection layer, positioned 20 cm from the radiator, relies purely on proximity focusing.

Each photon detector module covers an area of approximately 20 \times 20 cm², featuring an optimized SiPM pixel size of 2×2 mm², 1x1 cm² die.

ALICE

Simulation studies (by N. Nicassio): assumptions

Radiator

- Aerogel, $n = 1.03$
- Tickness: 2 cm
- Transmittance and n vs wavelenght from Aerogel Factory Co., Ltd. (Chiba, Japan) data

Cylindrical projective geometry

- All aerogel tiles oriented toward nominal interacion point
- Full coverage to charged particles without ovelaps
- Trapeizoidal tile profile to maximize the acceptance

Photon sensor

- Silicon Photon Multiplier (SiPM)
- Pixel size: 2x2 mm2
- $PDE \cong 40 \%$ at 450 nm
- Intrinsic single SiPM time resolution: 50 ps
- DCR: 50 kHz/mm2

24 sectors in z 36 modules in $r\phi$ for each sector

Simulation studies (by N. Nicassio): PID purity in p-p and Pb-Pb

Angle reconstruction

- Based on Hough Transform method (HTM)
- Timing cut on hit-track matching
- HTM N_{ph,min} cut on clustered hits

Particle identification

- Bayesian approach + probability cut **Background**
- Photons emitted by different tracks
- Aerogel Rayleigh scattered photons
- SiPM dark count hits (in DAQ gate)

Photodetector hit map of Pb-Pb event

Simulation studies (by N. Nicassio): Machine learning vs HTM

Dataset

- 5k Pb-Pb ($b < 3.5$ fm), $B = 2T$
- \approx 20.0 M charged tracks at bRICH
- Composition: π^{\pm} , K^{\pm} , p^{\pm} , e^{\pm} , μ^{\pm}

ML vs HTM-based PID

- Overall better effciency*purity achieved using ML w.r.t. HTM
	- Note: Efficiency limits in HTM due boundary effects: need for refined N_{HTM} conditions
	- The effect is automatically learned by my ML algorithm
- Better e^{\pm} & μ^{\pm} purities with ML
- ML worsening above ≈ 10 GeV/*c*
	- Limited statistics of high- p particles in training dataset

Photon detector

SiPM specifications:

pixel size = 2x2 mm², die (SiPM array) size ~ 1x1 cm², PDE > 40% at 450 nm, DCR < 50 kHz/mm², radiation hardness: NIEL $\sim 10^{12}$ 1 MeV neg/cm², time resolution < 100ps, packaging fill factor > 90% (TSV interconnection)

- Explore custom solutions for 2.5D configuration in CMOS Imaging Sensor technology (partnership with FBK)
- MIP detection by thin radiator window for TOF
	- Anti-reflecting coating
- FEE ASIC
- Module concept and cooling integration (cool down up to -30/-40 °C to reduce the DCR).

SiPM Array

PCB Interposer with embedded CO2 cooling and annealing

The barrel RICH challenges – Radiation Load

Last update: April 2023

Radiation load for Run 5+6 in pp collisions

WORK

Radiation load for Run 5+6 in Pb-Pb collisions

For the Barrel RICH: NIEL \sim 8.4 x 10¹¹ 1 MeV n_{eq}/cm² (even worse with ECal, \sim 10¹³)

65% running

WORK

The barrel RICH challenges – Radiation Load

ALICE

- High radiation load expected in the barrel (**NIEL ~ 8.4 x 10¹¹ 1 MeV neq/cm²)** \rightarrow SiPM DCR increases to not tollerable values (> 1 MHz/mm²)
	- Improve SiPM radiation hardness
	- Development of cooling/annealing strategy

Cooling option

Dual-phase CO2 cooling - A good choice for HEP applications

- advantages of dual-phase $CO₂$ cooling for HEP applications:
	- **large latent heat transfer** due to the phase change energy for the transition of liquid to gas
	- operation with **low mass flow** of the coolant is possible
	- low mass flow as well as a low liquid viscosity results in a low pressure drop along cooling pipe
		- **a low pressure drop allows the use of small pipe diameters or technical solutions like micro-**
	- **channel cooling, which allows new detector design concepts**
	- high **heat transfer capability** (typical ~8000 W/Km) is possible despite small pipe diameters
	- practical **temperature range** of −40°C to 25 °C for detector application
	- CO2 is a **natural**, non-toxic, non-flammable, radiation resistant and non-magnetic gas

Micro-channel cooling on Si - A silicon-embedded technology

- micro-channel cooling in Si is a favorable technology
	- optimized thermal contact with heat sources
	- heavily simplified assemblies
	- \cdot reduction of material
	- **efficient for cooling "chip-like" heat densities**
- basic technological process: deep RIE + (anodic, eutectic, fusion) wafer bonding
- further integrations also possible!
	- example: metal Re-Distribution Layers (RDL) (*M. Ullán et al. (HSTD13, 2023)*)

Hybrid pixel detector & micro-channel cooling plate

Monolithic CMOS detector

Monolithic CMOS detector with integrated micro-channels

ALICE

ASIC FEE development

ALCOR (A Low Power Chip for Optical sensors Readout) is a ASIC developed to readout silicon photomultipliers at low temperature. The chip is designed in a 110 nm CMOS technology

Developed by INFN-Torino for SiPM sensors used in the dRICH detector of the ePIC experiment at EIC.

Current plan for the RICH FEE ASIC

- Use ALCOR chip with modularity optimized for the RICH
- Already started a collaboration between INFN Bari, INFN Torino and INAOE (Mexico)
- If ALCOR TDC is suitable also for TOF/RICH purpose only further minor modifications will be needed
- ePIC Run for 64 channel ASIC foreseen beginning 2025

mm ∞ ဖ

8x8 pixel matrix ASIC ePIC version (64 channels)

5 mm

FEE ASIC: simulation results

Dead time effects of ALCOR TDCs not an issue provided to keep the SiPM DCR below 2 MHz/mm2

If a reset is applied to the TDCs from 1 ns to tens of ns before signal arrival, significant efficiency loss mitigation is achieved even with very high DCR

Using a proper time gate for the reset of TDCs is possible to keep excellent efficiency not only in LeadingEdge mode, but also in ToT/SlewRate mode

15 The ultimate efficiency limits vs DCR set by the recovery time of the SiPM \rightarrow Possible improvements by including signal shaping by the electronics

FEE ASIC: simulation results

FE output signal time constants

FE response to many PE signals

Next step: Studying pile-up of multiple photons and SiPM DCR bkg at FE level

Packaging: NOA facility at LNGS (Gran Sasso, Italy)

The DarkSide-20k experiment at LNGS

Dual-phase argon TPC for searching direct evidence of dark matter at the INFN underground laboratory LNGS, foreseen to begin operations in 2026

The TPC is equipped with SiPMs for detecting the prompt scintillation light

SiPMs based on FBK NUV-HD-Cryo Design, RUCE manufactured by LFoundry

- **~21 m2 TPC PDU** (2 optical planes, Top and Bottom of the TPC)
- **~5 m2 Veto PDU** (all around the TPC)
- Total = 26 m^2 of SiPM
	- **1400 wafers** (200 mm, **268 SiPM per wafer**, 7.9 x 11.7 mm2)
	- SPAD size = 30µm
	- Yield by contract= 80%, **actual is ~95%**
	- Cathode on the backside, anode pads for wire bonding
- Photodetector Module **(PDM) is 5 x 5 cm2** single output
- **PDU 20 x 20 cm2 = 16 PDM** with 4 differential output channels (1 channel = 4 PDMs summed)

17 *needed for the ALICE 3 RICH!!SiPMs surface comparable to that*

Packaging: NOA facility at LNGS (Gran Sasso, Italy)

We can benefit from the DarkSide experience!

Already in contact with LNGS director and NOA responsible!!

The Nuova Officina Assergi: future perspectives beyond DarkSide-20k (https://doi.org/10.22323/1.441.0310)

19

- Agilent Cary 4000 Series UV-Vis Spectrophotometer acquired by Bari INFN unit beginning 2024.
	- Equipped with an integration sphere
- Transparency measurement on aerogel samples already started

2023 prototype beam test (PS T10 2-18 October)

Cherenkov angle and timing

Beam test results in term of angular resolution and number of detected photo-electron using commercial SiPM and electronic, in agreement with simulation!!

Paper in preparation: "A compact and fast SiPM-based RICH detector for the future high-energy physics experiments"

LAPPD option for fRICH

Operation beyond **1013 MeV neq/cm2** leads to SiPM DCR increase above tens of MHz/mm2

- SiPM-based single photon detection not trivial even accounting cooling + annealing The expected radiation load is not an issue for vacuum-based devices like MCPs and LAPPDs
- Excellent time resolution, low DCR and high radiation hardness make them ideal for the fRICH

Expression of interest from the Yale University group!

2024 beam test

New PS beam test forseeen for Oct 24!

Upgrading the set-up with

- SiPM array with 2 mm of pitch \rightarrow Target sensor for ALICE 3 RICH
- Timing measurement:
	- New custom front-end boards based on Radioroc/Weeroc and picoTDC/CERN
		- The first version is under test
	- Read-out and DAQ with Mosaic boards
- Position measurement still based on the Petiroc 2A boards
- All the boards with common clock and trigger signals Prototype still based on on-the-shelf components
- Test aerogel focusing configuration

RICH 2025 plans

- Aerogel Characterization (ePIC synergy)
	- Setup for measuring the aerogel refractive index will be implemented, enabling comprehensive optical characterization of the Cherenkov radiator.

- Setup of the refractive index measurement shown in [2].
- Study of the prototype interposer and cooling system
- **Milestone: ottimizzazione configurazione interposer con annesso sistema di cooling a microcanali**
- Test new prototype at CERN-PS
	- Position measurement: new FEE/RO to improve single photon detection efficiency
	- Increase photon sensor acceptance (25 modules, 2.5 k€ each)

RICH 2025 plans

- RUN ASIC ALCOR
	- One wafer of ALCOR v3 from the ePIC RUN for testing purpose
	- Packaging studies for the ALICE RICH configuration
- RICH module mock-up construction for installation test

6.8 mm

Drawing realized by INFN Bari CAD service

 5_{mm}

ECFA DRD4 activities

DRD4 WP 4.4.1: Coupling of a thin Cherenkov radiator to SIPMs, for TOF of charged particles DRD4 WP 4.4.2: SiPM array, with mm-scale pixelization, suitable for use in TOF prototypes

ECFA DRD4 activities

DRD4 WP 4.4.2

27 Realization of fast electronic boards for timing measurements with TDC FE integrated as WEEROC/OMEGA and/or FastIC+

Budget request

Sinergie

Sigla in gruppo 5 **ASPIDES: A CMOS SPAD and Digital SiPM Platform for High Energy Physics (ASPIDES)**

The goal of this research activity is the development of a technology platform for the design, production and commissioning of dSiPMs, detectors with single-photon sensitivity and embedded functionalities. The activity will target applications to light detection for dual-readout calorimetry at future leptonic collider experiments, RICH and neutrino experiments.

In the research activity, the collaboration will pursue the development of a planar detector in a standard CMOS technology, naturally lending itself to the design of a monolithic sensor, where the front-end electronics and the sensitive element lie in the same substrate.

Backup

Measurements performed with a Perkin Elmer spectrometer: integrating sphere and two different light sourc ϕ cover the range 250 - 800 nm

Each tile was placed into a holder $(10x10 cm²)$ and mounted onto a metal ridge sliding perpendicular to the beam to explore different positions of the samples

$$
T(\lambda) = e^{-\frac{t}{\Lambda_{transm}}} = e^{-t\left(\frac{1}{A_A} + \frac{1}{A_S}\right)} = A \cdot e^{-\frac{B t}{\lambda^8}} \cdot e^{-\frac{C t}{\lambda^4}}
$$

$$
e^{-\sqrt{A_S}t} = e^{-\frac{\lambda^4}{\lambda^4}}
$$

$$
A_{scat} = \frac{\lambda^4}{C}
$$

ABSORPTION LENGTH:
\n
$$
e^{-\left(\frac{t}{A_A}\right)} = A \cdot e^{-\frac{B t}{\lambda^8}}
$$
\n
$$
A_{abs} = \frac{\lambda^8 \cdot t}{B t - \lambda^8 \cdot \ln(A)}
$$

SMALL IMPACT OF THE ABSORPTION ON THE TRANSMISSION LENGTH

Transmittance fitted by *Hunt formula* [NIM A 440 (2000) 338-347]

$$
T(\lambda) = e^{-\frac{t}{A_{transm}}} = e^{-t\left(\frac{1}{A_A} + \frac{1}{A_S}\right)} = A \cdot e^{-\frac{C t}{\lambda^4}}
$$

Transmittance fitted by **Hunt basic**:

$$
T(\lambda) = e^{-\frac{t}{A_{transm}}} = e^{-t\left(\frac{1}{A_A} + \frac{1}{A_S}\right)} = A \cdot e^{-\frac{C t}{\lambda^4}}
$$

Transmittance fitted by **Hunt extended**:

$$
T(\lambda) = e^{-\frac{t}{A_{transm}}} = e^{-t\left(\frac{1}{A_A} + \frac{1}{A_S}\right)} = A \cdot e^{-\frac{B t}{\lambda^8}} \cdot e^{-\frac{C t}{\lambda^4}}
$$

<T> = average of the transmittance values at the different points on the tile #1 (n = 1.03)

The shape of the tile has implications on the transmittance.

$n=1.03$

$n=1.04$

$n=1.05$

Thickness and flatness measurement in metrology lab at CERN!

- Results obtained on a tile of $n = 1.03$ with the touch probe system (force applied by the probe is 2 gr).
- The measuring system is the LEITZ PMMC with \pm 0.3 μ m of precision

There is a variation in thickness from the centre to the edges, of the order of 0.4 mm, and a different planarity in the two faces, one 0.7 mm, the other 1.27 mm. In general the tiles have the shape of a dome.

- The manufacturer (Aerogel Factory Ltd, Chiba, JP) stated that it is possible to improve the flatness and the thickness uniformity;
- the planarity can be mapped, to include the defect in the reconstruction of the Cherenkov angle.

ALICE

Simulation studies (by N. Nicassio)

