

ALICE 3 TOF: ATTIVITÀ IN CORSO E PROSPETTIVE FUTURE

<u>S. Bufalino</u> (grazie al contributo di molt* collegh*)

Riunione referee ALICE – Roma, 18-19 luglio 2024

ALICE 3 TOF: contributo italiano e organizzazione attività di R&D

- Coordinazione italiana del Work Package dedicato al R&D del TOF: <u>S. Bufalino (Torino)</u>, <u>M. Colocci</u> (Bologna), <u>A. Rivetti (</u>Torino)
- o sezioni INFN attualmente coinvolte: Bologna, Torino, Trieste, Trento

Focus dell'attività di R&D del 2024-2025 finalizzata al test in laboratorio e con fasci di particelle delle tecnologie proposte nella LoI: CMOS (baseline), LGADs (fallback solution) and SPADs (synergy with RICH R&D)

ALICE 3 TOF: contributo italiano e organizzazione attività di R&D

- Coordinazione italiana del Work Package dedicato al R&D del TOF: <u>S. Bufalino</u> (Torino), <u>M. Colocci</u> (Bologna), <u>A. Rivetti</u> (Torino)
- sezioni INFN attualmente coinvolte: Bologna, Torino, Trieste, Trento

Focus dell'attività di R&D del 2024-2025 finalizzata al test in laboratorio e con fasci di particelle delle tecnologie proposte nella Lol:

CMOS (baseline), LGADs (fallback solution) and SPADs (synergy with RICH R&D)

Simulazione di sensori

- Simulazioni TCAD, Garfield++ e Allpix² per il design di un sensore monolitico con <u>risoluzione temporale di 20 ps</u> e confronto con dati sperimentali
- Nuova tecnologia proposta nella Lol: CMOS con aggiunta di guadagno

ALICE 3 TOF: contributo italiano e organizzazione attività di R&D

- Coordinazione italiana del Work Package dedicato al R&D del TOF: <u>S. Bufalino (Torino)</u>, <u>M. Colocci</u> (Bologna), <u>A. Rivetti (</u>Torino)
- o sezioni INFN attualmente coinvolte: Bologna, Torino, Trieste, Trento

Focus dell'attività di R&D del 2024-2025 finalizzata al test in laboratorio e con fasci di particelle delle tecnologie proposte nella LoI:

CMOS (baseline), LGADs (fallback solution) and SPADs (synergy with RICH R&D)

Simulazione di sensori	 Simulazioni TCAD, Garfield++ e Allpix² per il design di un sensore monolitico con <u>risoluzione temporale di 20 ps</u> e confronto con dati sperimentali Nuova tecnologia proposta nella Lol: CMOS con aggiunta di guadagno
Caratterizzazione	 Test in laboratorio di sensori disponibili nelle sedi coinvolte Test beam per caratterizzazione dei sensori con MIPs al CERN PS nel 2023 e
di sensori	l'ultimo si è concluso una settimana fa

ALICE 3 TOF: contributo italiano e organizzazione attività di R&D

- Coordinazione italiana del Work Package dedicato al R&D del TOF: <u>S. Bufalino</u> (Torino), <u>M. Colocci</u> (Bologna), <u>A. Rivetti</u> (Torino)
- sezioni INFN attualmente coinvolte: Bologna, Torino, Trieste, Trento

Focus dell'attività di R&D del 2024-2025 finalizzata al test in laboratorio e con fasci di particelle delle tecnologie proposte nella Lol:

CMOS (baseline), LGADs (fallback solution) and SPADs (synergy with RICH R&D)

Simulazione di sensori	 Simulazioni TCAD, Garfield++ e Allpix² per il design di un sensore monolit con <u>risoluzione temporale di 20 ps</u> e confronto con dati sperimentali Nuova tecnologia proposta nella LoI: CMOS con aggiunta di guadagne 					
Caratterizzazione di sensori	 Test in laboratorio di sensori disponibili nelle sedi coinvolte Test beam per caratterizzazione dei sensori con MIPs al CERN PS nel 2023 e l'ultimo si è concluso una settimana fa 					
Micro-elettronica	 Supporto per studiare l'interfaccia sensore-elettronica e nell'implementazione delle strutture di test 	5				

ALICE 3 TOF - R&D activities planned for 2024

L'attività di R&D per il 2024 prevede:

Piano presentato a luglio 2023

- attività di caratterizzazione in laboratorio e analisi dei risultati del test beam appena concluso e di quelli che otterremo nel test beam previsto in <u>ottobre 2023</u>
- Sensori da testare:
 - stretta collaborazione tra i gruppi coinvolti per organizzazione dei test beam in modo da poter testare più sensori possibili
 - test di MADpix su telescopio a ottobre e design test board dedicata
- Modellazione e validazione del sensore: l'attività di simulazione TCAD e Monte Carlo per CMOS con guadagno procederà in parallelo, con l'obiettivo di sviluppare sensori più sottili e ottimizzare le performance anche sulla base dei risultati dei test beam
- Simulazioni TCAD dettagliate in corso, con il supporto di LFoundry, e misure dello split high-dose.
 Possibile un run di fabbricazione "short-loop" usando le maschere di litografia del ER3 di ARCADIA per ottimizzazione del processo di impiantazione.

Attività di caratterizzazione in laboratorio e analisi dei risultati del test beam

ARCADIA MAPS with gain add-on option

MADPIX Monolithic CMOS Avalanche Detector PIXelated Prototype

First prototype with integrated electronics and gain layer

<u>Active thickness</u>: 48 µm

- Backside HV: allow full depletion \rightarrow -25 V to -40 V
- Topside HV: manage the gain \rightarrow 30 V to 50 V
- 8 matrices of 64 pixels each
- 64 x 2 analogue outputs

Pixels of 250 μ m x 100 μ m

4 flavours

LFoundry in 110 nm commercial CMOS Process

----- Symmetrical

MAPS with gain: characterization in laboratory

I(V) scan to study the sensor behavior

Full depletion at V_{back} -28V Punch through for HV back > 35V

Breakdown for HV top > 45V

Riunione referee ALICE – Roma, 18-19 luglio 2024

MAPS with gain: laser measurement

Integral of the charge \implies Gain ≈ 2.5

Optical characterization at UNITN (Trento)

Gain lower with respect to the design as reported last year

Riunione referee ALICE – Roma, 18-19 luglio 2024

MAPS with gain: laser measurement

Optical characterization at UNITN (Trento)

Integral of the charge \implies Gain ≈ 2.5

200 $--V_{Ntop} = 35 V$ NIR laser light 180 $-V_{Ntop} = 30 V$ $-V_{Ntop} = 25 V$ 160 reference 140<u>ə</u> 120 001 charge, 08 001 charge, gain: 2 – 3 60 40Layout A1 20 $V_{\text{Pback}} = -35 \text{ V}$ 0 51015202530 0 time, ns

Investigation of the p-gain profile with TCAD

Gain lower with respect to the design as reported last year

Riunione referee ALICE - Roma, 18-19 luglio 2024

MAPS with gain: measurement with beam

LGAD

Collected Charge Distribution

Increasing the top voltage, the Most Probable Value (MPV) for a MIP raises

Riunione referee ALICE – Roma, 18-19 luglio 2024

MadPix

MAPS with gain: measurement with beam

First results on monolithic CMOS detector with internal gain

ACCEPTED FOR PUBLICATION ON JINST

Test on October '23 @CERN PS

Riunione referee ALICE – Roma, 18-19 luglio 2024

- 2 Flavors (A1 and A2)
- 4 Pixels (J3, J4, J5, J6)

LGAD 1mm x 1mm FBK W5, 10-3 Thickness: 25 µm

Riunione referee ALICE – Roma, 18-19 luglio 2024

MAPS with gain: timing resolution

test beam @ CERN - July 2024

TB2 - A2 - J5

TOP 45.0

TOP 50.0

BACK -40V

- Time resolution = standard deviation of the time difference between the reference time of the LGAD and CMOS trigger time
- Reference time: LGAD time @ 50% of the amplitude of the signal ($\sigma_t \approx 30$ ps)
- CMOS trigger time: crossing time of a fixed fraction of the CMOS amplitude
- Scan of the collection electrode voltage

350

MAPS with gain: timing resolution

test beam @ CERN - July 2024

Higher $V_{top} \rightarrow$ Better time resolution

Lower $V_{back} \rightarrow$ Better time resolution

MAPS with gain: electronic jitter contribution

RMS of the time difference between laser trigger out (TTL) and analogue output of MadPix (@ 50% signal amplitude)

- At present the time resolution is limited by the jitter component
- Increasing the gain, the jitter will decrease

MPV expected from the new short loop run:

 $> 60 \text{ mV} \longrightarrow \text{jitter} < 60 \text{ ps}$

Riunione referee ALICE – Roma, 18-19 luglio 2024

Sensor characterization: LGAD

Intense beam-test campaigns at CERN-PS demonstrated the possibility of achieving a time resolution of 20 ps with thin LGAD design

- 25 and 35 µm thickness tested already in <u>https://doi.org/10.1140/epjp/s13360-022-03619-1</u> (Jan 23)
- 20, 15 µm thickness tested for the first time in July and Oct 2023

Sensor characterization: LGAD

Intense beam-test campaigns at CERN-PS demonstrated the possibility of achieving a time resolution of 20 ps with thin LGAD design

LGAD inclined with respect to the beam direction to probe the sensor response at the edges of the outer barrel ($\eta \simeq 2$)

Sensor characterization: LGAD

Intense beam-test campaigns at CERN-PS demonstrated the possibility of achieving a time resolution of 20 ps with thin LGAD design

LGAD inclined with respect to the beam direction to probe the sensor response at the edges of the outer barrel ($\eta \simeq 2$)

Sensor characterization: SiPM

 Larger area SiPMs (3.2 x 3.12 mm²) – enough to collect all produced Cherenkov photons – tested in <u>October 2023</u>

Ch1	11
15 mm	3.20x3.12 mm ²
2027 10ch 2033 mm	Child U child

NUV-HD SiPMs produced by **FBK** 40 µm pixel pitch, 83% FF (6200 SPADs in 3.2 x 3.12 mm²)

Sensor characterization: SiPM

 Larger area SiPMs (3.2 x 3.12 mm²) – enough to collect all produced Cherenkov photons – tested in <u>October 2023</u>

NUV-HD SiPMs produced by **FBK** 40 µm pixel pitch, 83% FF (6200 SPADs in 3.2 x 3.12 mm²)

 Efficiency close to 100% at 6 pe → sensor can be operated at large npe threshold i.e. above DCR for a timing detector Trigger reference: LGADs

SiPMs at room temp (20-25 °C) \rightarrow cooling at lower T to be taken into account for further developments

Riunione referee ALICE – Roma, 18-19 luglio 2024

Attività di simulazione per modellazione e validazione del sensore

Riunione referee ALICE – Roma, 18-19 luglio 2024

Attività di sviluppo front-end e data readout

Riunione referee ALICE – Roma, 18-19 luglio 2024

Front-end and data readout

- New front-end and data readout operational since April 2024 for all sensor types (LGAD, CMOS, SiPM)
 - Liroc board (based on Weroc front-end ASIC for SiPMs) developed at INFN-BO
 - picoTDC board (based on CERN picoTDC) developed at INFN-BO for the next upgrade of ALICE-TOF
- Liroc is not specifically designed for LGADs and CMOS-LGADs → will have a PFEB(-D) capable to deal with (post-amplification) signals with the <u>ADCMP573</u> as target comparator (design started)

Front-end and data readout

- New front-end and data readout operational since April 2024 for all sensor types (LGAD, CMOS, SiPM)
 - Liroc board (based on Weroc front-end ASIC for SiPMs) developed at INFN-BO
 - picoTDC board (based on CERN picoTDC) developed at INFN-BO for the next upgrade of ALICE-TOF
- Liroc is not specifically designed for LGADs and CMOS-LGADs → will have a PFEB(-D) capable to deal with (post-amplification) signals with the <u>ADCMP573</u> as target comparator (design started)
- Latest beam test (July 2024) with:
 - discrimination of signals with opposite polarities (+/-) in 2 separate Liroc boards
 - DUTs:
 - matrices of 3x3 SiPMs with 1, 1.5, 3 thickness resin
 - LGAD (25, 50 µm) for reference time (also for CMOS)
 - CMOS will be discriminated/digitized from Oct 2024

ALICE 3 TOF Stato attività pianificate per il 2024

L'attività di R&D per il 2024 prevede:

- attività di caratterizzazione in laboratorio e analisi dei risultati del test beam appena concluso e di quelli che otterremo nel test beam previsto in <u>ottobre 2023</u>
- Sensori da testare:
 - stretta collaborazione tra i gruppi coinvolti per organizzazione dei test beam in modo da poter testare più sensori possibili
 - test di MADpix su telescopio a ottobre e design test board dedicata
- Modellazione e validazione del sensore: l'attività di simulazione TCAD e Monte Carlo per CMOS con guadagno procederà in parallelo, con l'obiettivo di sviluppare sensori più sottili e ottimizzare le performance anche sulla base dei risultati dei test beam
- Simulazioni TCAD dettagliate in corso, con il supporto di LFoundry, e misure dello split high-dose. Possibile un run di fabbricazione "short-loop" usando le maschere di litografia del ER3 di ARCADIA per ottimizzazione del processo di impiantazione.

STATO ATTUALE

Test in laboratorio + analisi dei dati con pubblicazione per SiPM

Caratterizzazione MADpix nel test beam di Ott. '23: risultati accettati per pubblicazione su JINST Primi risultati del test beam di inizio luglio

Attività continua e cruciale per design e confronto con i risultati sperimentali

Run completato. Grazie alla simulazione è stato individuato in poche settimane un mistmach tra i sensori richiesti e quelli prodotti

ALICE 3 TOF Piano delle attività 2025

Goal: scelta delle tecnologia che permetta di raggiungere la risoluzione temporale desiderata (20 ps)

- attività di caratterizzazione in laboratorio e analisi dei risultati del test beam:
 - analisi dei dati raccolti nel test beam concluso il 10 luglio '24 al PS del CERN
 - caratterizzazione dei sensori CMOS-LGAD in laboratorio e con MIP nel test beam previsto a fine ottobre 2024
 - È stato cruciale il supporto delle CSN per richiedere tempestivamente un nuovo short-loop
 - <u>Test beam nel 2025</u>: ci aspettiamo una schedula simile a quella degli ultimi anni con la possibilità di avere 2 test beam (in estate e in autunno)
 - Motivo della richiesta di finanziamento di due **run di fabbricazione "short-loop"** di cui uno subjudice ai risultati che saranno ottenuti con i sensori CMOS-LGAD del primo run

ALICE 3 TOF Piano delle attività 2025

Goal: scelta delle tecnologia che permetta di raggiungere la risoluzione temporale desiderata (20 ps)

- attività di caratterizzazione in laboratorio e analisi dei risultati del test beam:
 - analisi dei dati raccolti nel test beam concluso il 10 luglio '24 al PS del CERN
 - caratterizzazione dei sensori CMOS-LGAD in laboratorio e con MIP nel test beam previsto a fine ottobre 2024
 - È stato cruciale il supporto delle CSN per richiedere tempestivamente un nuovo short-loop
 - <u>Test beam nel 2025</u>: ci aspettiamo una schedula simile a quella degli ultimi anni con la possibilità di avere 2 test beam (in estate e in autunno)
 - Motivo della richiesta di finanziamento di due run di fabbricazione "short-loop" di cui uno subjudice ai risultati che saranno ottenuti con i sensori CMOS-LGAD del primo run
- Modellazione e validazione del sensore: l'attività di simulazione TCAD e Monte Carlo per CMOS-LGAD procederà in parallelo, con l'obiettivo di comprendere i risultati dei test, sulla base dei quali sviluppare sensori con performance ottimizzate
- Sviluppo di un sistema di front end e data-readout ottimizzato per sensori di timing da utilizzare per la caratterizzazione in lab e con fascio → richieste presso la sede di BO
- Richieste servizi 2025: supporto delle Sezioni di TO e BO per collaborare agli studi di meccanica

ALICE 3 TOF: milestones e richieste 2025

1. (30/06/2025)

Simulazioni TCAD, Garfield ++ e Allpix2 per ottimizzare, in termini di risoluzione temporale, il design dei sensori CMOS con guadagno sulla base dei risultati dei test in laboratorio e con fascio

2. (31/12/2025)

Caratterizzazione di sensori al silicio in laboratorio e con fasci di particelle per lo studio della performance in termini di risoluzione temporale

ALICE 3 TOF: milestones e richieste 2025

1. (30/06/2025)

Simulazioni TCAD, Garfield ++ e Allpix2 per ottimizzare, in termini di risoluzione temporale, il design dei sensori CMOS con guadagno sulla base dei risultati dei test in laboratorio e con fascio

2. (31/12/2025)

Caratterizzazione di sensori al silicio in laboratorio e con fasci di particelle per lo studio della performance in termini di risoluzione temporale

Missioni per Test Beam		Sede	Importo k€ Des	crizione	
			For I	beam tests and sensor caracterization in the lab: fast discriminator x2 f	or
Sede	Importo k€	Bologna	24 Fund	ction generator, filters for optical setup (laser)	
oloana	23.5	Bologna	3.8 TCA	D licence for sensor simulations and design	
orino	23,5		For t func	the caracterization in the laboratory and have a TCT setup with full ctionality: Power supply + tester + broadband amplifier, beam splitter o	and
rento	94	Torino	20 IR pl	hotocamera + cables anc connector	
Totale: 56,4 k€		Trento	4 Con	nponents for optical setup (sensor caracterization with laser)	
		Torino++	91 Two	Short loop run per sensori CMOS-LGAD	
			Tota	le: 51.8 k€ + 91k€ short-loop run	35

Consumo & inventariabile