A magnet for a muon collider detector

Andrea Bersani

UON Collider Collaboration

- \frown Dedicated meeting has been held:
 - → Detector requirements (M. Casarsa)
 - → MDI requirements (D. Calzolari)
 - → SC tech. for future colliders and detectors (A. Yamamoto)
 - → Alu. stabilised SC cables R&D at CERN (B. Cure)
 - → 3.6 T CLIC like detector (M. Mentink)
 - → Detector magnet survey (AB)
- \sim CLIC detector is considered a good starting point for the Muon Collider detector
- \sim "Traditional" aluminium stabilised NbTi based Rutherford cable is the baseline
- \frown Other possibilities should be taken into account
 - → different SC materials
 - \frown different cable protection
 - → different geometries

Tentative Design

- ∽ To start, I took parameters from CLIC-based design
- I assumed a ~ 50 mm gap for muon chambers between iron layers (magnet design not so sensitive to this, at this level)
- ✓ 6 layers in the end-caps, 7
 layers in the barrel
- ∽ Total coil length 7.8 meters, diameter 7.3 meters
- \frown Field at centre 3.75 T
- Very similar calculations in M. Mentink slides

Picking inspiration from CMS

Preventivi, Jun. 2024

Minimally optimised design

Preventivi, Jun. 2024

Some remarks on field quality

- \neg Tracker region: -2200 < z < 2200, 0 < r < 1500
- → B at IP: 3.66 T
- \frown B = 3.60 ± 0.08 T
- → Field uniformity: ±2.3%
- \frown (Almost no optimisation)
- \neg Max Br = 0.12 T
- → Yesterday values
- ∽ B at IP: 3.75 T
- \neg B = 3.63 ± 0.2 T
- → Field uniformity: ±5.5%
- \frown (No optimisation)
- \neg Max Br = 0.2 T

B [tesla]			
Max: 3.681]	_
	3.690		
	3.672		
	3.654		
	3.636		
	3.618		
	3.600		
	3.582		
	3.564		
	3.546		
	3.528		
	3.510		
Min: 3.517			
	X		
	4		_

Shamefully preliminary 10 TeV

→ Few modification w.r.t. Benjamin's slides \frown Looks feasible at a first glance (with all the caveats already exposed) \frown Nos so much space for optimisation → Field quality looks... m...

- limited
- \frown Forces on the coil are completely to be studied
- → There is plenty of space for optimisation
- \frown According to detectors requirements some further study can be started
- \frown Future activities
 - \sim better implementation of detector requirements and constraints
 - → 2D and 3D models for different detectors architectures
 - \neg preliminary studies for magnetic-mechanical-thermal model
- → All according to detector design development
- \frown Requests:

 - \neg depending on the work load, a significant manpower could be needed in the future

Outlook

 \neg A magnet capable of 3.75 T, cold bore dia. ~ 7 m, length ~ 8 m should be technically feasible \neg Due to the magnet form factor (length is very similar to diameter), the field uniformity is very

 \neg some money for travels and a contribution for software licenses and workstation renewal

