The evolution of the ENUBET beamline

erc

Elisabetta G. Parozzi

Collaborator: Marc Andre Jebramcik

CERI

INFN

The ENUBET Project: Monitored Neutrino Beams

ENUBET's physics goal: overall error on the intensity of the produced neutrinos at the 1% level.

Technique for better neutrino flux and flavour control at production. In conventional neutrino beams, v_{μ} and v_{e} are measured indirectly \Rightarrow Beamline simulation and hadron-production data. Main flux uncertainties are given by hadrons re-interactions in the beamline apertures.

⇒ Direct Measurement: Number of neutrinos produced is measured counting the number of leptons produced at large angle inside the decay tunnel. (A. Longhin, L. Ludovici and F. Terranova, Eur. Phys. J. C 75 (2015) 155)

 π^{-}/K^{-}

Enubet's reference beamline characteristics

A beam line that can transport a broader momentum range hadrons, i.e from 4 - 8.5 GeV/c with well defined momentum, but at the same time keep the narrow-band properties of the v beam.

Lavout summary:

- First quadrupole distance from the target: 30 cm
- Target 0.5° tilt from beamline to reduce background and primary re-interaction. •
- 5 mm W absorber after collimation \rightarrow to reduce the positrons bgk.
- ~4s slow extraction with 4.5x10¹³~POT per spill on the target $\rightarrow 10^{10}$ Kaons/spill
- Short Secondary Beamline (29 m)
- Primary Momentum: 400 GeV/c
- Secondary Momenta: 8.5 GeV/c 6 GeV/c 4 GeV/c

Evolution of the ENUBET beamline into the SBN beamline at CERN

- **ENUBET** is a "monitored" neutrino-beam experiment
- **NuTag**: Particle-by-particle reconstruction of the neutrino kinematics (two-body decay)
- **SBN**: The ENUBET-NuTAG merger that combines the two projects under the PBC framework to exploit their synergies

Aim of this study: Conducting of a conceptual feasibility analysis that considers all possible locations and the respective expenditures

E. G. Parozzi - Muons4Future

— fresh new name since 2 days!

Evolution of the ENUBET beamline into the NuSCOPE beamline at CERN

- **ENUBET** is a "monitored" neutrino-beam experiment
- **NuTag**: Particle-by-particle reconstruction of the neutrino kinematics (two-body decay)
- **NuSCOPE**: The ENUBET-NuTAG merger that combines the two projects under the PBC framework to exploit their synergies

Aim of this study: Conducting of a conceptual feasibility analysis that considers all possible locations and the respective expenditures

The NuSCOPE beamline characteristics at SPS Energy

The current beamline design is the product of an extensive optimization process at 400 GeV/c proton momentum

The beamline design merges the beamline requirements for both the ENUBET and the NuTAG proposals \rightarrow pixel detectors in addition to calorimeter in decay tunnel

The beamline's meson production is maximized and the event rate is adjusted to meet the pile-up constraints of the NuTAG pixel detectors

Parameter	Value		
Primary proton energy	400 GeV/c		
Beamline momentum (mesons)	up to 8.5 GeV/c		
Extraction type	slow: 4.8s or 9.6s from the SPS		
Spill intensity	1.0E13 protons/spill		
Event rate	1 – 2 THz		
Instantaneous power	170 – 340 W		
K ⁺ / π^+ per proton	1.3E-3 / 1.9E-2		
K ⁺ / π^+ rate	up to 2.7 GHz / 40 GHz		
Annualized proton requirement	2E18 – 3E18 protons/year		
Total proton requirement (1% stat. error on v _e x-section)	1.4E19 protons		
Beamline length to decay tube	23 m		
Bending magnet strength	1.8 T		

E. G. Parozzi - Muons4Future

Meson yield comparison

The optimized design significantly enhanced the phase space acceptance of the beamline by employing a multi-objective genetic algorithm to simultaneously tune 26 parameters. This parallel optimization led to a substantial improvement in secondary particle yields, **increasing the K**⁺/ π ⁺ **fluxes by a factor 1.8**.

 \rightarrow The required POT from the SPS was drastically reduced, enabling a more efficient and cost-effective operation while maintaining or exceeding performance targets.

Particle yield	ENUBET design	REF design	SBN (opt.)	SBN (opt.) PS energy
${ m K}^+/~{ m PoT}~(10^{-4}) \ { m \pi}^+/~{ m PoT}~(10^{-2})$	$\begin{array}{c} 3.6 \\ 0.4 \end{array}$	$7.0 \\ 1.1$	$12.6 \\ 1.9$	$0.31 \\ 0.047$

Possible integrations at CERN's SPS

Considerations of possible implementations are:

- North Area existing halls: EHN1, EHN2 & ECN3
 - $\circ \qquad \text{ECN3} \rightarrow \text{SHiP}$
 - $_{\circ}$ ~ EHN1 & EHN2 too strong radiation protection constraints
- LSS4 (AWAKE) and LSS6 (HiRadMat)
 - $_{\circ}$ lack of slow extraction setup
- New facility: ECN4?
 - existing studies and proposal for BDF/SHiP with a simpler target complex

Ongoing studies and considerations prove ECN4 to be a feasible solution together with parallel studies for a conceptual slow extraction at LSS6. The latter would have the advantage of being completely shielded by soil and the existing infrastructure.

Conclusion

- Successful beamline optimization. PoT requirement has shrunk significantly: 1.0E13 protons/spill with an annualized intensity of 2.0E18 3.0E18 PoT/year \leftarrow 25% of the TCC2 annual intensity
- Two comparable ways of implementing the beamline either in some new facility ECN4 in the North Area of the CERN campus or in the TT61/TNC region downstream of the SPS LSS6 straight section.
- 1% statistical uncertainty on the ve inclusive cross section within the envisaged time span of 5 years achieved.

For more details, Marc's presentation at Neutrinos@CERN: <u>https://indico.cern.ch/event/1460367/overview</u> and ESPPU submission: <u>https://cds.cern.ch/record/2929199</u>