May 26 – 30, 2025, Venezia, Istituto Veneto di Lettere, Scienze ed Arti - Palazzo Franchetti

NuSTORM perspectives

Stefania Ricciardi, STFC RAL

on behalf of the nuSTORM Collaboration

Science and Technology Facilities Council

Muons 4 future... neutrino beams!

- Well-controlled neutrino beams, via circulation and decay of muons in a storage ring
- Compact storage ring for muon energies in the GeV range
 - Energy range relevant for oscillations at long-baseline experiments
- Simple muon production method
 - Can exploit existing proton beam facilities at laboratories like FNAL and CERN

Innovative concept! First v beam facility based on a stored muon beam

Stefania Ricciardi

NuSTORM concept – Main advantages vstorm

- Unique beam composition: 50% v_e , 50% anti- v_{μ}
- Precise flux, no hadronic uncertainties!
- Energy of the stored beam tunable, allows neutrino energy scan
- Synergies with muon collider:
 - Production target and pion handling possibly shared with muon cooling demonstrator
 - O(GeV) pions used for neutrino source
 - O(200 MeV) pions used for demonstrator

Scientific objectives

- %-level ($\nu_e A$) cross sections
- BSM searches, e.g. sterile neutrinos
- Muon collider testbed

nuSTORM: a step towards the Muon Collider **vstorm**

- FODO lattice, to minimise dispersion
- Arcs and Return Straight
 - Fixed Field Alternating gradient (FFA) lattice, to improve acceptance of muons

R&D platform for technologies important for the realisation of a Muon Collider (MC)

- Complete implementation for large acceptance storage-ring (inc. injection and extraction sections); develop and test FFA magnet technology
- Ideal testbed for developing and validate beam-monitoring instrumentation for MC

Feasibility of nuSTORM at CERN

CERN-PBC-REPORT-2019-003

- Extraction from SPS through existing tunnel
- Far detector location (2 km) available
 - preserve highly sensitive oscillation searches in the region of LSND/MiniBoone anomalies (via $v_e \rightarrow v_{\mu}$)

Key beam parameters foreseen for nuSTORM (based o	n the analysis of CENF.
Momentum	100 GeV/c
Beam Intensity per cycle	$4 imes 10^{13}$
Cycle length	3.6 s
Nominal proton beam power	156 kW
Maximum proton beam power	240 kW
Protons on target (PoT)/year	$4 imes 10^{19}$
Total PoT in 5 year's data taking	$2 imes 10^{20}$
Nominal / Maximum repetition rate	6/3.6 s
Max. normalized horizontal emittance (eh at 1 σ s)	8 mm.mrad
Max. normalized vertical emittance (ev at 1 σ)	5 mm.mrad
Number of extractions per cycle	2
Interval between extractions	50 ms
Duration per extraction	10.5 μs
Number of bunches per extraction	2100
Bunch length (4s)	2 ns
Bunch spacing	5 ns
Momentum spread (dp/p at 1s)	2×10^{-4}

Highest stored-muon beam power

Stefania Ricciardi

Call for precise cross-section measurements

- LBL (Dune/HyperK) CP-violation search through v_e (and \overline{v}_e) appearance in beam of mainly v_{μ} (and \overline{v}_{μ})
- $v_e(\bar{v}_e)$ cross sections uncertainties: major $\delta_{\rm CP}$ systematics

ESPPU 2020 - To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required [..]The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

$\nu_e A$ cross-sections measurements hurdles

Flavour-dependent corrections

Tomalak et al., Nature Commun. 13, 5286 (2022)

 $v_e A$ from $v_\mu A$ + lepton universality: constraints not sufficient!

Phase-space, radiative corrections, nuclear effects alter v_e / v_μ cross section ratio

Effects in the low-energy region (0.2-5) GeV very hard to model and not negligible compared to expected statistical uncertainties for Hyper-K and DUNE [e.g., S. Dolan, arXiv:2301.09555 and references therein]

Conventional neutrino beams:

- Low intrinsic v_e and anti- v_e flux (both at same time!)
- High flux uncertainties (hadron production uncertainties in proton interactions)
- Intrinsic v_e flux spectrum does not match spectrum from v_u oscillation in far detectors

Not ideal for $v_e A$ cross-section measurements!

Precise cross-sections require precise v fluxes

- In the detector for π^+ injection
 - *initial* v_{μ} flux from $\pi^+ \rightarrow \mu^+ v_{\mu}$ ["pion flash"]
 - then $v_e + \overline{v}_{\mu}$ flux from $\mu^+ \to e^+ v_e \overline{v}_{\mu}$

% level precision achievable on both electron and muon neutrino and antineutrino cross-sections

- Well-understood fluxes, essentially no background
 - Exact composition from muon decay kinematics
 - Energy spectrum from accelerator tune
 - Intensity %-level from ring instrumentation
- High fluxes for both neutrino flavours
- Only one type of neutrino and anti-neutrino at one time (after injection)
 - identity by lepton ID and/or charge in CC interactions

Beam spectrum tunable

- stored μ momentum can be varied between 1 and 6 GeV/c, acceptance ±16%
- Precise control over the neutrino beam energy, to match oscillation regime

ν_{μ} and $\overline{\nu}_{\mu}$ QE cross Sections

- O(10)-ton fiducial mass detector, 50 m from end of Production Straight, 10²¹ POT
- 1% (green) and 10% (yellow) flux uncertainty + detector systematics

ν_{e} and $\overline{\nu}_{e}\,\text{QE}$ cross Sections

arXiv:1308.6822

- O(10)-ton fiducial mass detector, 50 m from end of Production Straight, 10²¹ POT
- 1% (green) and 10% (yellow) flux uncertainty + detector systematics
- Very sparse existing data (mainly from MINERvA and T2K)

Detector considerations

Concepts developed for near detectors of longbaseline neutrino oscillation experiments are suitable options for nuSTORM detector

Ex. DUNE ND-GAr

High-specifications:

- 4π acceptance, very low threshold
- e/µ id;
- B-field for sign selection
- exclusive final state reconstruction

Preliminary studies show that superior performance allows to achieve desired precision despite relatively low mass (1t)

nuSTORM recent progress

ESPPU 2026 – nuSTORM submission arXiv: 2505.06137

Optimisation of accelerator facility

- Horn geometry and target design simulation [FLUKA] aimed at improving the production and capture yield of low-energy pions ($p_{\pi} \le 2 \text{ GeV/c}$)
- Full simulation of transfer line, injection and production straight via Beam Delivery Software Simulation [BDSim] GEANT4 based

Potential of producing synthetic quasi-monoenergetic neutrino flux

New phenomenological studies to extend physics programme

- Transverse Kinematic Imbalance (TKI) technique to study nuclear effects in vA interactions
- Neutrino Tridents production
- Oscillation disappearance searches
- Large Extra Dimensions
- Lepton Flavour Violation

Neutrino fluxes at nuSTORM

State-of-the art flux with 5x5m detector at 50m from end of production straight

Stefania Ricciardi

/STORM

P. Jury

R. Kamath P.Kyberd

NEW

Synthetic flux at nuSTORM

PRISM concept: combine multiple samples to synthetize in software a flux with spectrum equivalent to the desired one **Hyper-K or DUNE**: different near detector locations off-axis

NFW

nuSTORM synthetic flux:

sample fluxes from muon beams of different momentum detector fixed on-axis

nuSTORM synthetic beam: significantly **narrower** and more **Gaussian**

Unlike DUNE and Hyper-K, nuSTORM can also produce **synthetic** v_e beams by combining different v_e spectra

30/05/2025

Energy scan to extract dynamical evolution of nuclear effects **Transverse Kinematic Imbalance** (TKI)

[Phys.Rev.C 94, 015503,2016]

Insights on nuclear effects with minimal dependence

on neutrino energy

Measured at T2K, MINERvA, MicroBooNE

- Low $\delta \alpha_T$: impact of nuclear effects low: "Nuclear model calibration"
- High δα_τ: energy-dependent nuclear effects: dissipative processes e.g. FSI

Rare SM processes: tridents

			$v \Delta \rightarrow v \pm l^{-} l^{+} \Delta$				J,Turner et al.
							arXiv: 2505.06137
ν_{μ} —	ν_{μ}	Channel	SBND	μ BooNe	ICARUS	DUNE	nuSTORM
		$e^{\pm}\mu^{\mp}$	10	0.7	1	2993 (2307)	173
	Σ^{\prime} μ^{-}		2	0.1	0.2	692 (530)	29
BSM	≜	e^+e^-	6	0.4	0.7	1007 (800)	107
	γ* μ ⁺		0.7	0	0.1	143 (111)	5
, 	, ,	$\mu^+\mu^-$	0.4	0	0.0	286 (210)	14
$N \left\{ __ \right\}$	} N		0.4	0	0.0	196 (147)	9

• The dominant source of v_{μ} at nuSTORM is pion decay, flux approximately 100x that from muon decay

- At nuSTORM energies, dominated by coherent interactions mediated by W or Z
- Sensitive to physics BSM: e.g., Z'
- nuSTORM projected trident SM yields could exceed those of all existing facilities [not competitive with DUNE]

BSM: light sterile neutirnos

Survival probability in 3+1 sterile neutrino parameter space (short-baseline approximation):

$$P_{\alpha\alpha}^{\rm SBL} = 1 - \sin^2(2\theta_{\alpha\alpha}) \, \sin^2\!\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

BSM: Large Extra-Dimensions

Large Extra Dimensions (LED) can explain the lightness of neutrino masses

- Dirac neutrinos are confined on a "brain" (our 3+1D Universe)
- Sterile neutrinos can propagate through higher-dimensional "bulk" and mix with active ones, which modifies oscillation probabilities
- nuSTORM has sensitivity to µm LED length scales
- nuSTORM can set competitive limits on LED length scale for lightest neutrino mass, m₀ >0.1 eV

vSTORM

l Turner et al

BSM: LFV and LNV in pion decays

Only loose bounds exist from BEBC •*LFV*: $BR(\pi^+ \rightarrow \mu^+ v_e) < 8 \times 10^{-3}$ •*LNV*: $BR(\pi^+ \rightarrow \mu^+ \overline{v_e}) < 1.5 \times 10^{-3}$

At injection, 3 neutrino species •Pion decay [SM] : $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ •Muon decay [SM]: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_{\mu}}$ nuSTORM can look for:

•Excess of v_e (signal for LFV pion decay) •Excess of $\overline{v_e}$ (signal for LNV pion decay, background free)

- Exquisite precision and high brightness of pion flash, allows for statistical sensitivity <10⁻⁴ in both LFV and LNV [just using counting information]
- Including systematics, nuSTORM still improves on BEBC and on SBND-PRISM expectations

	, amor ot at.
arXiV:2405.00777	arXiv: 2505.06137
Experiment (Uncertainty)	$\mathrm{BR}\left(\pi^+ \to \mu^+ \nu_{\mathrm{e}}\right)$
BEBC	8×10^{-3}
SBND (10%)	1.5×10^{-3}
SBND-PRISM $(10\%, 5\%)$	1.2×10^{-3}
SBND-PRISM $(10\%, 2\%)$	8.9×10^{-4}
nuSTORM(1%)	7.1×10^{-4}
Statistics only	4.7×10^{-5}

NEW

LFV sensitivity at 90% CL

Conclusions

nuSTORM will be an innovative neutrino facility

- %-level electron neutrino cross-sections in the energy range of interest to CPV searches
- nuclear dynamics and collective effects in nuclei with 100% polarised probe sensitive to isospin
- sensitive searches of exotic processes
- preparation of phenomenological paper in progress

Recent developments:

optimisation of the beamline; simulation developments; synthetic beam

nuSTORM is a step towards muon collider

- serves as muon collider test-bed
- proof of principle of stored high-brightness muon beams
- Feasibility of executing nuSTORM at CERN established through Physics Beyond Collider
- Studies progressing in collaboration with International Muon Collider Collaboration

"There are concrete studies of how NuSTORM can be connected to a muon collider demonstrator. Similar opportunities – and more ambitious ones – should also be present at any muon collider facility in the future"

from IMCC ESPPU 2026 submission

nuSTORM will nurture a compelling physics programme alongside technological R&D!

Thank you

Integration with Muon Collider Demonstrator

- Demonstrator facility flexible enough to accommodate other experiments
- nuSTORM, and potentially ENUBET, could be branched from the 6D cooling demonstrator
- Same target complex, shielding and general target infrastructure
- Deflection of beamline could reduce radiation streaming towards nuSTORM ring
- Synergies between experiments would reduce costs