Low Energy neutrino cross sections with much beams

M.G. Catanesi INFN Bari Venezia 26-30 Maggio 2025

Introduction

- Neutrino cross-sections first measured in bubble chambers in the 1960's and 70's (ANL, BNL, FNAL, CERN, IHEP)
 - Very successful experiments; observation of neutral currents
 - Some low Z targets, deuterium x-sec measurements suffered small statistics and poor knowledge of neutrino fluxes
- Data have large uncertainties (20-100%) or show discrepancies that we would like to understand
 - Discovery of neutrino oscillations in the last decades has meant two things for neutrino cross-section physics:
 - Suddenly we really care about neutrino cross-sections in the 0.5-10 GeV range where they are not well measured and the channels are complicated
 - Suddenly there are high intensity (almost pure) muon neutrino beams around the world in the 0.5-10 GeV range for making some of these measurements (but not all ...)

LBNO Concept (experimental point of view)

Sensitivity of future Neutrino Oscillation Experiments

- Up to now the precision was limited by statistics but once DUNE and Hyper-Kamiokande will begin data collection, their unprecedented beam power and large detector mass will drastically reduce statistical uncertainties, making systematic errors the dominant constraint on their physics potential.
- The sensitivity of future neutrino oscillation experiments strongly depends on the ability to reduce the impact of systematic errors to the percent level.
- Uncertainties in low-energy cross-section measurements (0.2–5 GeV/c) and Monte Carlo models affect the extrapolation of fluxes from Near Detectors (ND) to Far Detectors (FD), limiting the precision of the results.

Neutrino Beams (0.2-5.0 GeV)

X-Sections & beam composition Hyper-K

DUNE

Current status of "neutrino cross-section" measurements Inclusive charged current total cross-section

v cross section measurement

The measurement of δ_{CP} crucially depends on the comparison of v vs \overline{v} oscillation \rightarrow bias on v vs \overline{v} cross section direct reflect in bias on δ_{CP} measurement

What do we measure?

Interaction not on free
nucleons

- Nuclear effects / Final State Interactions (FSI) can alter the event observables
- Effects depend on target material
- More relevant for low neutrino energies

Why do we need good models?

12

Neutrino oscillation goes like $\sim L/E_{v}$ but we do not measure E_{v} ! We measure the outgoing muon at SuperKamiokande and we infer the neutrino energy on the base of available models

2p2h events fill the "dip" region sensitive to neutrino oscillation \rightarrow wrong modelling would cause bias on oscillation parameters

S. Bolognesi – Jennifer Meeting

What do we need to measure?

Uncertainties in ND \rightarrow FD extrapolation :

 different E_v distribution (because of oscillation)

need to reconstruct the neutrino energy from the final state particles

different target

A-scaling: measure cross-sections on different targets (and/or on the same target of FD)

• different acceptance

 different neutrino flavor (because of oscillation)
v (v) flux has typically a wrong sign component measurement of cross-section in the larger possible phase-space: increase angular acceptance of ND

measure cross-section asymmetries between different neutrino species (eg v vs v important for for δ_{CP})

The new generation of ND detectors will help a lot in reducing the systematic errors ... but it's not enough ...

Neutrino beam from muons

- The limitations can be overcome by producing neutrino beams via muon decay in the straight section of a storage ring.
- The key advantages of generating neutrino beams from muon decays rather than meson decays are:
 - The absolute neutrino flux can be accurately determined. provided the stored muon current, momentum, and polarization are carefully measured.
 - The beam contains only one type of neutrino and one type of antineutrino, with their identities controllable by selecting the charge of the stored muons.
 - This enables precise measurements of v_e, v_µ, (anti)v_e, and (anti) v_u.

First intense

and $\overline{\mathcal{V}}_{e}$ beam in the word !!

 $\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$

Advantages

Beam Composition $=> 50\% \text{ of } v_{e}$

Excellent ratio v/proton=> running cost

f

No background

Simple and more compact detectors

storage muon rings for neutrinos

Why we need a storage muon ring

- The muon lifetime is about 100 times longer than the corresponding charged pion lifetime. A linear decay channel of the type used to produce conventional neutrino beams would in practice be too short to use efficiently as a muon decay channel.
- This problem can be overcome by using a muon storage ring with a straight section pointing towards the desired experimental area.

This method yields a beam with a well-defined and precisely known composition:

- a stored µ-beam produces 50% muon neutrinos and 50% electron antineutrinos, while a stored µ+ beam results in 50% muon antineutrinos and 50% electron neutrinos.
- In the energy region of interest 0.2 muons/p.o.t can be produced
- We assume 25% of the decay in the straight section

 $\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$

Neutrino Factories: a first stage of a Muon Collider (past)

Requirements

19

- High intensity Proton driver Proton beam ~10 GeV on target > 10²²/year
- Target, capture and decay
- Bunching and phase rotation
- Ionization Cooling (MICE)
- Acceleration 120 MeV → → 10 GeV with RLAs

Decay ring
Store for Linac option Ring option
Results : 10²¹ r
Investments in R&D and High Cost

From Cooling

Linac to 0.8 GeV 0.8–2.8 GeV RLA

2.8-10 GeV RLA

(**)**

To Doopy Ding

An example from the literature (Rev. D 57 (1998) 6989-6997)

The R&D required at the initial stage has so far delayed the realization of the first neutrino beam from muons.

However, new opportunities are now emerging to initiate a promising neutrino physics program !

Key Feasibility Issues

 Proton Driver
Target
Front End
Cooling
High Power Target Station
Capture Solenoid
Energy Deposition
RF in Magnetic Fields
Magnet Needs (Nb₃Sn vs H Performance

To make the first neutrino experiment using a muon-derived beam we don't need high intensity from day 1.....

- For example, in a CERN-based scenario, we could start with the currently available SPS intensity (10¹²–10¹³ protons per burst), with the possibility of a gradual upgrade to higher intensities.
- There are no critical issues related to the proton target or horn technology up to 10¹⁴ protons per burst, as standard solutions can be adopted.
- Even with a proton intensity 100 times lower than in typical Neutrino Factory scenarios, we can already achieve meaningful results.
- at least 5*104 CC interactions of ve /year

(but also anti- v_{μ} + anti- v_{e} + v_{μ})

To make the first neutrino experiment using a muon-derived beam we don't need final cooling from day 1.....

- For example, at CERN, a fantastic opportunity will arise with the construction of the 6D cooling demonstrator.
- This facility, combined with the available SPS intensity, could enable the production of the first cooled muon beam at an energy of 200 MeV/c.

Cooling: The Emittance Path

However, we still need an initial acceleration stage to ramp up the muons from 200 MeV/c to 1.5 GeV/c (for Hyper-K) and up to 5 GeV/c (for DUNE). > not very difficult

not very expensive

To make the first neutrino experiment using a muon-derived beam we don't need to build expensive detectors from day $1 \dots 1^+ \rightarrow e^+ v \bar{v}$

- As an example, at CERN 2 beautiful ProtoDune detectors (total mass 1Kton liquid argon) are available at the Neutrino platform
- This kind of beam does not t require a magnetized setup.
- A detector with good PID capabilities (able to distinguish muons from electrons with high efficiency) will be OK (WC are also OK)
- You can complement measurements in liquid argon by adding (as an example) a High pressure TPC allowing topologies and A dependence studies to discriminate between nuclear models (prototypes are already available)
- No background in the beam will maximize achievable physics results

Synergies with Nustorm (v from stored Muons)

See Stefania Ricciardi talk

In Summary

 $\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$ $\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$

- The possibility of producing neutrino beams from muons was first proposed in 1986. In particular, it would allow for the generation of electron neutrino beams — something never achieved before.
- Initially, such beams were envisioned as the first stage of a muon collider, a crucial starting point for creating an ultra-intense neutrino source for long-Baseline oscillation physics. However, despite the clear advantages and strong physics potential, realization of such a facility proved impossible due to major technical challenges and the high costs associated with building such an infrastructure.
- Today, however, the growing interest in and importance of lowenergy neutrino cross-section measurements (especially for v_{e}), combined with the exciting opportunity to produce a cooled muon beam at CERN for the first time, opens the door to a new and promising scenario.

I hope that I convinced you that:

- Low-energy cross-section measurements do not require proton budgets beyond what a laboratory like CERN can provide.
- If the cooling channel can deliver a sufficiently intense muon beam, it could serve not only for validating the beam generation concept, but also as a valuable source for meaningful physics.
- Equipping the laboratory with a muon storage ring for the first time would make it possible to begin testing — and even doing physics — before the cooling channel interface is fully operational.
 - The presence of appropriately sized neutrino detectors at the lab would allow for immediate neutrino measurements.
 - At the same time, the availability of a neutrino beam would enable the development of new instruments to measure all relevant parameters, including interaction types and validation of nuclear models.

- To set sail, a ship needs more than just resources — it requires those resources to be used in a synergistic and optimized way.
- For example, creating a neutrino infrastructure that concentrates in one area the development of pure muon-neutrino beams, the nuSTORM approach for the ring, and new neutrino tagging systems is essential for advancing this field.
 - This talk was made to show the great potentialities of these ideas I think it is important to share with you.
 - We are working hard to have soon realistic simulations allowing us a more quantitative assessment about the physics reach. Stay tuned !

Please tell me how vs get mass !

19/05/2003 Sheldon Lee Glashow Nobel Prize in Physics 1979

Thanks!

Numax (High Intensity) at Fermilab

