Mauro Mezzetto

INFN Padova

Status and perspectives of Neutrino Oscillation Experiments

Muon4Future, Venice, 30/05/2025

NFN

Neutrino Physics in the past 20 years

2025

2005

δm_{12}^2 🥥	SOLARS+KAMLAND $\delta m_{12}^2 = (7 + -1) 10^5 \text{eV}^2$	$\theta_{12} \bigtriangledown \odot \odot$	SOLARS+KAMLAND $< \sin^2(\theta_{12}) < 0.5$	δm_1^2	2	SOLARS+KAM $\delta m_{12}^2 = (7.41 + / -)$	ILAND 0.2) 10 ⁻⁵ eV ²	θ_{12}	(SOLARS+KAMLAND $\sin^2(\theta_{12}) = 0.303 + -0.012$
Addressed by a SuperBeam/Nufact experiment					Addressed by a Long Baseline experiment					
δm_{23}^2	ATMOSPHERICS $\delta m_{23}^2 = (2.0 \text{ +/- } 0.4) 10^3 \text{ eV}^2$	θ_{23} \bigcirc 0.9	ATMOSPHERICS $0 < \sin^2(\theta_{23}) < 1$	δm ²	3	LBL+ATMOSPH $\delta m_{23}^2 = (2.51 + - 0)$	ERICS .03) $10^{-3} eV^2$	θ_{23}	\checkmark	LBL+ATMOSPHERICS $\sin^2(\theta_{23}) = 0.572 + /-0.02$
						REACTORS+L	BL	-		
	θ 13	$\begin{array}{l} CHOOZ \ LIMIT \\ \theta_{13} < 14^0 \end{array}$				θ 13	\checkmark	θ ₁₃ =8.54 ⁰ +/-0.11		
	δςρ 🔘	Mass hierarchy				$\delta_{\rm CP}$	\bigcirc	Mass hierar	chy 🤇	\supset
	DETA DECAVEND DOINT					BETA DECAV	END POINT			
Σm_v \square	$\sum m_v < 6.6 \text{ eV}$			Σm	v	$\Sigma m_{v} < 0$.8 eV (90%CL))		
Dirac/Majoran	a 🔿			Dirac	/Majoran	a 🔿				

Apparently not a great record (but have a look to the greatly increased precision). So why several thousands of physicists are joining next generation long baseline experiments, which are among the priorities in hep in many countries (Italy included)? Let's have a closer look to the achievements of neutrino oscillations physics

Major achievements in neutrino oscillations

Before 90's: detection of Solar Neutrinos (**Homestake**) and detection of SuperNova neutrinos (**Kamiokande**), awarded with the **2002 Nobel Prize** to Ray Davis and Masatoshi Koshiba *"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos*"

Low energy neutrino astronomy remains a pillar of the physics case of the far detectors of Long Baseline neutrino experiments

At the same conference, **Chooz** reported no evidence of reactor $\bar{\nu}_e$ disappearance while **MACRO** reported a ~2.5 σ signal of atmospheric neutrino oscillation

1998: **Super-Kamiokande** discoveries neutrino oscillations by studying atmospheric neutrinos. Awarded with the **2015 Nobel Prize** to Takaaki Kajita "*for the discovery of neutrino oscillations, which shows that neutrinos have mass*"

2002: **SNO** provides a model independent signature of solar neutrinos oscillations. Art McDonald shares the 2015 Nobel prize.

Gallex/GNO at LNGS had provided a model dependent evidence of solar neutrino disappearance

T2K and then **Double Chooz** reported early indications of non-zero θ_{13} values

2012: the reactor experiments **Daya Bay** and **RENO** provide the first observation of a non-zero value of θ_{13} . Awarded with the EPS-HEP prize in 2023. For a longer discussion of the θ_{13} saga you can read the long citation of the prize. SK, SNO, Kamland, Daya Bay and T2K awarded with the Breakthrough prize 2016

M. Koshiba, 1988

T. Kajita was here in 2007 and 2009, but this picture is taken in 2016 when he received a Laurea Honoris Causa by Padova University

Art Mc Donald, 2011

Why neutrino oscillations matter

Neutrino oscillations \rightarrow neutrinos are massive ($\Delta m^2 \neq 0$)

In two v generations (α,β flavor, i,j mass eigenstates): $P(\nu_{\alpha} \rightarrow \nu_{\beta}, \alpha \neq \beta) = \sin^2(2\theta_{ij}) \sin^2(1.27 \frac{\Delta m_{ij}^2 (eV^2)L(km)}{E(GeV)})$

In the Standard Model neutrinos are massless

- Absence of right-handed neutrinos -> no Dirac mass for neutrinos
- Lepton number is an accidental symmetry at the renormalizable level → given SM fields and gauge symmetry, lepton number cannot be violated at dimension 4 → no Majorana mass can be generated

New physics is required to give mass to neutrinos

- Neutrino masses are only parameter measurable both by hep and cosmology
- A crucial test of consistency

To **single out** individual neutrino masses you need to measure neutrino mass ordering.

What do neutrino oscillations still have to say about v masses?

Neutrino oscillations cannot measure absolute neutrino masses, but can determine their pattern by measuring **neutrino mass ordering** (NMO) and the **octant** of θ_{23} (which decides if v_3 is mostly v_{μ} or v_{τ})

 $(\Delta m^2)_{atm}$ $(\Delta m^2)_{atm}$

Neutrino mass ordering: normal (NO) or inverted (IO), measurable by Long Baseline experiments (the 1-2 ordering already decided by solar oscillations)

The neutrino mixing is also very different from quarks

Why θ_{13} matters

No way to decide next generation LBL strategy without knowing the θ_{13} value:

A "small" θ_{13} value (÷2) would have made conventional neutrino superbeams (the same neutrino beams of the '70s + brute force) useless: need for new concepts as neutrino factories or beta beams. Neutrino mass ordering searches would have been almost impossible.

 θ_{13} as measured via $\bar{\nu}_e$ disappearance by reactor experiments breaks any θ_{13} - δ_{CP} degeneracy in LBL experiments and greatly improves their sensitivity

T2K: Eur.Phys.J.C 83 (2023) 9, 782

The Jarlskog invariant in neutrino oscillations:

 $J_{\nu} = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta_{CP}$

has a maximum value about three orders of magnitude bigger than the invariant in the quark sector $J_v(max) = 3.2 \cdot 10^{-2}$

 $\mathbf{J}_{\mathbf{quark}} = 3.8 \cdot 10^{-5}$

opening the possibility of a role of neutrino oscillations in explaining the **matter-antimatter asymmetry** in the Universe through Leptogenesis.

See-saw parameters

Three generations of Long Baseline Experiments

Long baseline experiments produce intense $v_{\mu}(\bar{\nu}_{\mu})$ beams and detect them at the maximum of atmospheric oscillations.

Leading process are $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations, and so ν_{μ} disappearance, allowing to measure the atmospheric parameters θ_{23} and Δm^2_{23}

Subleading process are $\nu_{\mu} \rightarrow \nu_{e}$ oscillations, sensitive to $\theta_{\rm 13}$ and $\delta_{\rm CP}$

Disappearance formula

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}[1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}]\sin^{2}\frac{\Delta m_{23}^{2}L}{4E}$$

First Generation: K2K in Japan, aimed to confirm the Super-Kamiokande results with accelerator neutrinos by detecting ν_{μ} disappearance.

Second Generation: Minos in the States (v_{μ} disappearance) and Opera at CNGS (v_{τ} appearance), aimed to improve the Super-Kamiokande results.

Third Generation: T2K in Japan and NOvA in the States. Sensitive to subleading processes, aimed to measure θ_{13} and constrain CP violation in the leptonic sector.

Subleading ν_e appearance formula

$$\begin{split} p(\overleftarrow{\nu}_{\mu} \to \overleftarrow{\nu}_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] \qquad \theta_{13} \text{ driven} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPever} \\ &\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd} \\ &+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven} \\ &\mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\frac{aL}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)} \end{split}$$

The T2K experiment

J-PARC

accelerator

Target

Horns

0m

- T2K: Tokai to Kamioka (295 km baseline)
- Running since 2010
- ~575 members, 75 Institutes, 14 countries
- First indication of $\theta_{13} \neq 0$
- Precise measurements of the atmoshperic parameters θ_{23} and Δm^2_{23}

3 GeV RCS

- Constrain the CP violation phase δ_{CP}
- Neutrino cross-section measurements

Beam

dump

Decay volume

Neutrino beamline

Far detector

ID

lear detectors

ND2>

2.5°

Muon V_{μ} INGRID

Barrel ECAL

monitor

118m

Upper dome of Super-K

LINAC for

for v and

p decay

39.3m

Water and air purification system

1,000 m under the Ikenoyama-Mt. 50 kton of pure water 22.5 kton of fiducial mass ~11,100 inner detector (ID) PMTs (20") 1,885 outer detector (OD) PMTs (8") direction/particle ID based on pattern

30 GeV Main Ring

T2K Neutrino Beamline

Main goals of next gen experiments: Dune, Hyper-K, Juno, atmospherics

CP violation: 5σ sensitivity for the widest possible range ($\geq 50\%$) of δ_{CP} values

Mass Ordering: decide between Normal and Inverted Ordering at 5σ

Precision physics/Exotics: challenge the Standard Model (next slide)

Astrophysics: the gigantic far detectors are excellent observatories for rare decays and astrophysical measurements

Precision physics \rightarrow new physics

Future

DUNE/T2HK Pu

 10^{-1}

 $\sin^2 \theta_{13}$

For instance by studying non-unitary leptonic mixing matrixes (LMM)

The JUNO experiment

Jiangmen Underground Neutrino Observatory, China, detecting \bar{v}_{e} disappearance at reactors.

Liquid Scintillator Detectors

	Target mass	Energy resolution (ơ)
Daya Bay	20 ton	8%/√E
Borexino	300 ton	5%/ √ E
KamLAND	1000 ton	6%/√E
JUNO	20 000 ton	3%/ √ E

74 institutes (8 INFN) 17 countries/regions ~700 collaborators

Signal rates

Neutrino source	Expected signal
Reactor	45 evts / day
Supernova burst	10 ⁴ evts at 10 kpc
Diffuse supernova background	2-4 evts/ year
Sun ⁸ B (⁷ Be)	16 (490) / day
Cosmic rays	100+ / year
Earth crust & mantle	400 / year

Detect for the first time solar and atmospheric oscillation modes simultaneously

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \left(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32}\right)$$

10³ JUNO data taking time [days] 104

 10^{-2}

10²

KM3NeT

2016 and 2020 ESFRI Roadmap KM3NeT4RR: KM3NeT for Next Generation EU (PNRR) 14 countries, 47 institutions, ~ 300 collaborators

KM3Ne¹

Orca sensitivity to oscillation parameters

Neutrino mass ordering

6

+ Normal Ordering

KM3NeT

An example about the many different ways to look for new physics with oscillations at Neutrino Telescopes

Q.Liu et al., arXiv:2312.07649 This representation was first introduced by Fogli, Lisi et al., Phys.Rev.D 52 (1995) 5334

- Cosmic sources produce neutrinos with a well defined flavor composition
- Oscillations randomize the flavor composition in their travel, but not completely.
- If something happens different from oscillations, it will modify the composition at earth:signature for new physics
- Present precision is far from enough for these studies, but in the future, also combining several experiments, it will be possible to look for new physics signatures in this plane.
- The role of KM3NeT/ARCA could be crucial

Hyper-Kamiokande

~600 collaborators
106 Institutes
22 Countries
(INFN: 6 sezioni ~ 10% of the collaboration)

Hyper-K detector configuration

• Inner Detector (ID)

- 64.8m diameter, 65.8m height
- 40k PMTs, 50 cm, will be installed
- 800 Multi-PMT modules will be integrated as hybrid configuration
- Outer Detector (OD)
 - 1m (barrel) or 2m (top/bottom) thick
 - 3-inch PMT + WLS plate
 - Walls are covered with high reflectivity Tyvek sheets

CP violation sensitivity

It's important to stress that efficiencies, backgrounds, systematic errors come from more than 10 years of T2K analysis efforts

By combining beam neutrinos and atmospherics

- For maximal CP violation (δ_{CP} =- $\pi/2$) 5 σ sensitivity is reached in 3 years.
- In 10 years, CP conservation excluded at 5 σ for 60% of δ_{CP} values.

Systematic Errors

T2K systematic errors for the v_e appearance channel are 4.7% (initial goal was 5%). Without the close detectors they would be ~13%.

Aim to reduce them to around 2% (full simulation undergoing):

- ND280 redesigned and optimized to better constrain systematic errors (already fully in place)
- A new Intermediate (0.75 km) Water Cherenkov Close Detector (**IWCD**) to further constrain systematic errors (ready for Hyper-K)
- More statistics (20x T2K) will allow close detectors to constrain v-nucleus interaction models better (no assumptions on better models)
- Gadolinium doping can enhance efficiency and purity of antineutrinos' detection (will not be added on day one)
- Dedicated experiments like Enubet could reduce (anti-)v_e cross section uncertainty further.

Total percentage error on sample event rates:								
	μ-I	ike	<i>e</i> -like					
Error model	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ar{ u}$ -mode	ν -mode	$\mid u/ar{ u} \mid$ modes \mid		
			0 d.e.	0 d.e.	1 d.e.	0 d.e.		
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%		
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%		

HK Expected event rate @10 years vsT2K today

 $v: \bar{v} = 1:3$ (T2K is 1:0.7), @ $\delta_{CP} = 0$

	НК	T2K
ν -mode, 1 ring μ -like	~8800	318
$\bar{\nu}$ -mode, 1 ring μ -like	~12000	137
v-mode, 1 ring e-like	~2100	94
\bar{v} -mode, 1 ring e-like	~1800	16
v-mode, 1 ring e-like, 1 decay e-	~300	14

Near detector (ND280) upgrade

Almost in place now for T2K, will be re-used by Hyper-K More (and more granular) mass for the neutrino interactions: **SFGD** More angular acceptance: High Angle TPCs Better veto for external tracks: Time-of-flight Significant lower energy threshold for protons and much better neutron

detection efficiency.

Inside the former UA1 and Nomad magnet.

SFGD:

Event number : 345342 | Run number : 16847 | Spill : 28852 | Time : Fri 2024-06-07 18:29:00 JST |Trigg

Rare decays and astrophysics in HK

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- High precision measurements of neutrino mixing in a single experiment.
- Determination of the neutrino mass ordering in the first few years.
- Observation and measurement of CP Violation in the neutrino sector.
- Test of the 3-neutrino paradigm (PMNS unitarity).
- Observatory for astrophysical neutrino sources (solar, atmospheric, supernova).
- Search for BSM physics.

- 1450 collaborators
- 215 Institutes (11 INFN)
- 35 Countries

• On-axis

- Sensitive to first and second oscillation maxima
- Part of the spectrum above the tau creation threshold (~3.5 GeV)

Current status and future plans in a nutshell

- LBNF is being delivered in its entirety.
- DUNE Phase I:
 - FD (approved): 2 x 17 kt (total) LAr TPCs: one Horizontal Drift (ready in 2029), one Vertical Drift (ready in 2030).
 - ND (baseline TBC and approved by 2025): NDLAr with TMS; DUNE-PRISM; SAND on-axis.
- PIP II: ongoing construction, first beam in 2031, reaching 1.2 MW by end 2032.

- Phase 2, as submitted to P5 (report due in early December):
 - DUNE ND plan: More Capable Near Detector (HPGAr TPC, magnet, calorimeter).
 - DUNE FD plan: FD3, FD4.
 - Fermilab plan: ACE: MIRT, Booster Replacement. Can provide up to 2.1 MW at DUNE start.

CP Violation and neutrino mass ordering

Determining Mass Ordering with DUNE Phase I, 4 yrs, using v_e and anti- v_e spectra.

Far Detectors

2 (max 4) LAr TPCs, 17 kt Argon total (10 kt fiducial) each one:

- APA : based on a wire chamber technology
- Drift length ~ 350 cm -> ~ 180 KV on cathode
- ~ 9800 m³ = ~ 13'661 tons of active LAr

- CRP: based on perforated PCB technology
- Drift length ~ 640 cm \rightarrow 300 kV on cathode
- Photon detectors on the cathode at 300 kV
- ~ 10180 m³ = 14190 tons of active LAr

... The race for neutrino mass ordering (aka hierarchy)

Argüelles, Fernandez, IMS and Jin, PRX 13 (2023)

NMO can only be +/-1, so sensitivity means

Conclusions

JUNO

Hyper-K

DUNE

The outstanding achievements of neutrino physics in the past 25 years will allow exciting new neutrino physics for the next 25 (at minimum)

Both guaranteed signals and new physics searches will be performed

With a great complementarity between JUNO, ORCA, IceCube, DUNE and Hyper-K

The gigantic 3-liquids far detectors are the ultimate observatories for low-energy neutrino astronomy

If you like to hear about neutrinos nearby don't miss <u>Neutrino Telescopes 2025</u>, September 29th-October 3rd, Padova