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Muon catalyzed fusion (µCF)
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Muon catalyzed fusion “cycle”

D2/T2

µ

tµ

dtµ

α + n + µ

µα dµ

λc

W

Accelerator

Yfusion ≃ (W + λ0/λcϕ)−1

‣ Muons first form muonic atoms and 
then form the muonic molecules 

‣ After nuclear fusion, small part of 
the muons sticks to the helium 
nucleus, which results in a loss of 
muons. 

‣ Fusion yield depends on the cycle 
rate and the sticking probability.

Rate-limiting
W ∼ 0.5 % , λc ∼ 108 s−1

@Liquid hydrogen density

Yfusion ≈ 102

300 fusions/µ = scientific breakeven 
150 fusions/µ is the current world record.
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Muonic molecule

˝ Typically have 200-300 eV binding energy 
˝ Sparse energy levels 
˝ ddµ, dtµ have an excited state with small binding energy 

320 BREUNLICH ET AL 

Table 2 Coulomb molecular binding energiesa (in e V) 

J, v ppj1 pdj1 ptj1 ddj1 dtj1 ttj1 

0, 0 253.15 221.55 213.84 325.07 319.14 362.91 
0, I 35.84 34.83 83.77 
1,0 107.27 97.50 99.13 226.68 232.47 289.14 
1, 1 1.97b 0.66' 45.21 
2, 0 86.45 102.65d 172.65 
3,0 48.70 

a The J = 0 and I energies come from Alexander & Monkhorst (40a), the J = 2 energies 
from Frolov (139), and the J = 3 energy from Vinitsky (J 38). These are not necessarily 
the only publications giving the listed value. For an extensive compilation, see (38). 

bThe accurate energy is 1.9749 eV. 
e Also (40b). The accurate energy is 0.6603 eV. d Also (140). 

dtj.l with J = 1 ,  V = 1 .  For example, in the Born-Oppenheimer (fixed­
nuclei) approximation the state is much too bound, but if adiabatic cor­
rections are included it is not bound at all! The first successful calculations 
were made by Vinitsky et al (for a review, see 38) by expanding the wave 
function in a Born-Oppenheimer basis and solving the coupled differential 
equations; that type of calculation has become known as the "adiabatic 
representation" though it is truly a nonadiabatic treatment (sometimes 
called the method of "perturbed stationary states"). Bhatia & Drachman 
(39) proved variationally that the J = 1 ,  v = 1 state of dtj.l is bound, and 
Hu (40) shortly afterward demonstrated that very accurate variational 
calculations were feasible. These calculations use interparticle coordinates 
(Hylleraas-type wave functions). Subsequently the Coulomb binding ener­
gies have been variationally determined with an accuracy better than 0.1 
meV, far surpassing the coupled-equation method. The accurate values 
for the J = 1 ,  v = I states are 1 .9749 eV for ddjl and 0.6603 eV for dtjl 
(40a,b). Beyond this level of accuracy, the energies may be affected by 
uncertainties in fundamental constants (see 40b). 

However, there are corrections to these Coulomb energies that are very 
important (41) .  These include relativistic and QED effects, particle spin 
(hyperfine) effects, nuclear electromagnetic structure effects, and energy 
shifts caused by the host molecule. Table 3 shows calculated values of the 
various corrections. For dtj.l, the corrections diminish the binding of the 
lower hyperfine state by � 60 meV. The present uncertainty in this cor­
rection is thought to be a few meV; an accuracy of � 1 meV is needed for 
many resonant molecular formation calculations. The uncertainty due to 
the Coulombic wave function should soon be eliminated, but there is 
also significant uncertainty due to imprecise knowledge of the potential 
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W. H. Breunlich et al., Annu. Rev. Nucl. Part. Sci. 39, 311 (1989).
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￼5Vesman mechanism: an efficient dtµ/ddµ formation

Collide with D2

Excess energy is 
transferred to inter-
nuclear excitation of 
the host molecule

dtµ becomes a quasi-nucleus 
of the new molecule

= Resonance process, 
enhancement at the 
matching energy

Non-resonant formation (slow)

Resonant formation (fast)
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A brief history of µCF

1947, 1948 Theoretical prediction of µCF (Frank, Sakharov) 
1956 Observation of pdµ fusion by cosmic muons (Alvarez) 
1967 Theory of resonant ddµ formation mechanism (Vesman) 
1977 Prediction of dtµ reaction rate (Gerstein&Ponomarev) 
1987 Observation of X-rays from dt-µCF (Nagamine) 
1987 Precise calculation of dtµ binding energy (Kamimura) 
1987-2003 Dedicated experiments at PSI, RAL, TRIUMF, JINR, etc  

(Fusion yield reached 100-150 per muon)

W. H. Breunlich et al., Ann. Rev. Nucl. Part. Phys. 1989 
L. I. Ponomarev, Contemp. Phys. 1990 
P. Froelich, Adv. Phys. 1992 

V. R. Bom et al., J. Expt. Theo. Phys. 2005 
D. V. Balin et al., Phys. Part. Nucl. 2011 

M. C. Fujiwara et al., PRL 2000 
N. Kawamura et al., PRL 2003

Review article

Review of JINR, PSI experiments

New insights
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Revisit µCF

Upgrade of experimental techniques

• Intensity of slow muon beams 
• New X-ray detectors

Motivations

• Future energy source

• Mono-energetic neutron source

• Cooling of µ– beam

No plasma confinement; 150 fusions/muon has been achieved so far

Material analysis, transmutation of LLFPs, etc

Muon microscope, 3D-elemental analysis, Muon collider, etc
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COMPREHENSIVE STUDY OF MUON-CATALYZED NUCLEAR … PHYSICAL REVIEW C 107, 034607 (2023)

FIG. 14. Momentum spectrum of the muon emitted by the dtµ
fusion. The red and black curves denote r(K ) and r (N)(K ) defined
in (6.9) and (6.10), respectively. The dotted curve shows r (N)

AD (K )
by the adiabatic approximation for r (N)(K ) (see text); r (N)

AD (K ) is
normalized to r (N)(K ) to have the same K-integrated values, λ(N)

f =
1.04×1012 s−1.

The calculated momentum spectrum r(K ) is illustrated in
Fig. 14 by the red curve in units of s−1 (MeV/c)−1, whereas
r (N)(K ) is represented by the black curve. The energy spec-
trum r̄(E ) is shown in Fig. 15 by the red curve in units
of s−1 (keV)−1, whereas r̄ (N)(E ) is represented by the black
curve.

The difference between the red and black curves in Figs. 14
and 15 originates from the α-µ Coulomb-force contribution
T (+) in Eq. (6.4). The contribution from T (C) is minor. The
effect of T (+) is small at low energies but becomes relatively
large at high energies, which is seen in Fig. 16 for the log
scale, in the dotted green curve derived based on only |T (+)|2.

As shown in Fig. 15 and Table VI, the peak of the energy
spectrum is located at E = 1.1 keV both for r̄(E ) and r̄ (N)(E ).
Since the spectrum has a long high-energy tail, the average
energy is 9.5 keV (8.5 keV) for r̄(E ) [r̄ (N)(E )]. Therefore,
“muons with 1-keV peak energy and 10-keV average energy”

TABLE VI. Property of the energy spectrum of muon emitted
from (dtµ)J=v=0 → α + n + µ given by the present calculation,
r̄(E ) and r̄ (N)(E ), and the adiabatic approximation r̄ (N)

AD (E ) which
gives no absolute value (cf. Fig. 15).

Muon energy Peak Average Peak
spectrum energy energy strength

(keV) (keV) (s keV)−1

Present, r̄(E ) 1.1 9.5 1.60×1011

Present, r̄ (N)(E ) 1.1 8.5 1.47×1011

Adiabatic, r̄ (N)
AD (E ) 1.6 10.9

FIG. 15. Energy spectrum of the muon emitted during the dtµ
fusion. The red and black curves denote r̄(E ) and r̄ (N)(E ) defined in
(6.11) and (6.12), respectively. The peak position is at E = 1.1 keV
in the two cases. The dotted curve shows r̄ (N)

AD (E ) obtained using
the adiabatic approximation for r̄ (N)(E ) (see text). r̄ (N)

AD (E ) is nor-
malized to r̄ (N)(E ) to have the same E -integrated values, λ(N)

f =
1.04×1012 s−1.

are emitted by the dtµ fusion. This result (more precisely,
Figs. 14 and 15) will be useful for the ongoing experimental
project to realize an ultraslow negative muon beam using the
µCF [21–26] (cf. Type II of Sec. I).

When the authors of Refs. [21–23] proposed the solid D-T
layer system that cools the incident muon beam by utilizing

FIG. 16. Energy spectrum of the muon emitted during the dtµ
fusion in log scale. The red and black curves denote r̄(E ) and r̄ (N)(E )
defined in (6.11) and (6.12), respectively. The dotted green curve
represents r̄ (+)(E ) when only |T (+)|2 is used.

034607-17

M. Kamimura, Y. Kino, T. Yamashita, PRC (2023)

µCF as a moderator of µ–
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D2/T2

µ

tµ

dtµ

α + n + µ

µα dµ

Accelerator

Toward achieving a high fusion yield

Dynamics resulting in the dtµ 
molecule from µ is crucial.

fast
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Muonic atoms de-excite during collisions with the other molecules
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A long-standing problem in µCF kinetics: Resonance state

✦ Feshbach resonance state between tµ(n=2) and d. 
✦ Decay with lifetime ~ 10 ps. 
✦ Spontaneously formed during cascade?

+
decay

μ
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µ
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Fusion Fusion

5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6393  |  https://doi.org/10.1038/s41598-022-09487-0

www.nature.com/scientificreports/

where Ni(t) represents the population of i. We use !FIF = 2 × 108 s −1 which corresponds to the hot muonic 
atom collision in ∼ 1 keV kinetic energy produced from the non-radiative dissociation of resonance states of 
muonic molecules.

Reproducibility of experimental observations
Figure 3a displays the calculated cycle rates !c together with the available experimental results in wide tem-
perature ranges. We display the results of EVM-SPM-FIF kinetics model, where ηdtµ = 5 and !SPM = 5 × 1010 
s −1 , and compare the experimental data with other models with di"erent parameters. As the branching ratio 
resulting in tµ(1s) a#er the radiative dissociation of dtµ∗ , ϒtµ , has never been predicted exactly and depends 
on the initial population and the subsequent Auger transitions among the resonance levels, we examine the !c 
in the range of 0.1 ≤ ϒtµ ≤ 0.9 . $e EVM-SPM-FIF model almost reproduces the experimental values over a 
wide range of temperatures and ct . Note that the experimental data of ct = 0.4 and T ≤ 16 K were obtained for 
the solid hydrogen target and might require additional theoretical treatment coupling to phonon  interactions28.

It should be stressed that at the low ct condition, the simple VM, ηdtµ = 1 and !SPM = 0 , signi%cantly overes-
timates the cycle rate particularly at the small ct conditions. In contrast to the VM, the VM-SPM model in which 
ηdtµ = 1 and !SPM = 5 × 1010 s −1 provides a good agreement of calculated !c with experiments at ct = 0.1 . $us, 
the SPM processes play an indispensable role in description of d µ and t µ population drastically. Although the 
VM-SPM model does not reproduce the !c at high ct conditions, the EVM-SPM model gives closer results. As 
described below the Eq. (4), in previous studies of µ CF kinetics model, a phenomenological factor q1s , which 
represents the probability of a d µ∗ reaching d µ(1s) , was introduced to explain the experimental  observations15,85. 
In the present calculation, q1s is not explicitly used; instead, the SPM processes naturally alter the q1s tuning. 
As described in Ref.73, one of the reasons of this alternation is that the SPM processes open a way back from 
t µ(n = 2) to d µ(1s) instead of the muon transfer reaction, d µ(n = 2) + t → t µ(n = 2) + d at the rate of 1012 
s −184. Another factor comes from ddµ∗ → d µ(1s) + d + γ , which prevents the µ in d µ(n = 2) from transferring 
to the t, and enhances the probability that d µ(n = 2) reaches d µ(1s) . In turn, at the high ct condition, the ttµ∗ 
formation/dissociation processes enhances the t µ(1s) fraction, which results in the small dependency on ϒtµ.

One can see the VM-SPM-FIF kinetics model, where ηdtµ = 1 and !SPM = 5 × 1010 s −1 using ϒtµ = 0.5 , in 
the same %gure. $e scaling factor ηdtµ does not change the !c at small ct conditions; however, ηdtµ signi%cantly 
contributes to !c at high ct and high T conditions. EVM-SPM assumes thermalization time scale of the hot muonic 
atoms to be 107 s −1 at ϕ = 0.4 . $e reproducibility of the experimental observations is improved by adding the 
FIF process to the EVM-SPM.

In order to investigate the IMF and FIF contributions to the total fusion yield Yf  , we introduce partial fusion 
yields Y (i)

f  where i denotes IMF(dtµ ), IMF(ddµ ), IMF(ttµ ), and FIF. Figure 3b shows ratios Y (i)
f /Yf  for EVM-

SPM-FIF and VM models at the condition of ϕ = 0.4 and T = 900 K. $e similar trends can be seen at other 
temperatures. $e IMF(dtµ ) has a major contribution to the Yf  in both models, and accounts for more than 95% 
of Yf in the range of 0.1 ≤ ct ≤ 0.8 $e contribution of IMF(ddµ ) strongly depends on the ct and decreases as the 
ct increases. $e contribution of IMF(ttµ ), as expected, increases as the ct increases. EVM-SPM-FIF model ampli-
%es the contribution of IMF(ddµ ) and reduces that of IMF(ttµ ) from those of the VM. $e FIF has a constant 

Figure 2.  Reaction scheme of µCF, including the dtµ formation based on the Vesman mechanism (VM, 
lightblue arrows) and subsequent intramolecular fusion (IMF, red arrows), side-path model (SPM, purple 
arrows), and fusion in-&ight (FIF, orange arrows). $e green arrows denote the αµ sticking and the dashed 
green arrow denotes µ reactivation from µHe. $e arrows with hν indicate X-ray emissions from the 2p state 
muonic atoms and resonance states of the muonic molecules.

Impact of the resonance states on µCF cycles

More detailed cycle 
with resonances of 

all isotopologues
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X-rays can be an evidence of dtµ* and ddµ*

+ γ

Radiative dissociation

The X-ray spectrum has a state-specific energy structure and becomes 
their footprints. 
However, K X-rays from the muonic atoms are also nearby…

8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6393  |  https://doi.org/10.1038/s41598-022-09487-0

www.nature.com/scientificreports/

and

In the limits of Mi  ∞, for example,   / i  const. , and T/Ti  ∞.
Figure 6 displays the Yf  as a function of temperature and the target density   under the condition of ct = 0.5 . 

As most of the rates of atomic processes except for radiative transitions depend on   , the Yf  increases as   and T 
increase. White lines in Fig. 6 show possible thermodynamic processes for the future experiment (or experimental 
set up). As shown in Fig. 6, the high Yf  region could be achieved by adiabatic compression (white dashed lines) 
using Ti = 100 K and  i = 10 3 (approximately 1 atm). "ree white solid lines indicate the di#erent conditions 
of the SWC. We consider the gas jet of Mi at the Ti and  i initially. "e T and   of the compressed gas depends 
on Mi that is a experimental tuning factor. SWC-1 assumes Ti = 300 K and  i = 10 3 , which can reach Yf < 20 . 
As seen in SWC-2 and SWC-3, increasing  i , the highest   and Yf  increases.

In contrast to the AC, the SWC shows the limit of density. On the other hand, the temperature is easily tun-
able, which would be suitable for the high temperature µCF. While the AC is a static compression, the SWC is a 
dynamical compression that can be applied to realize the $owing gas target. Moreover, such a dynamic $ow of 
the target will be utilized to extract energy and remove the helium atoms produced in µ CF reaction.

(9)
 

 i
=

(γ + 1)M2
i

(γ  1)M2
i + 2

,

(10)
T

Ti
= 1+

2(  1)

( + 1)2
 M2

i + 1

M2
i

(M2
i  1).

Figure 5.  Fusion (a) and X-ray (b)–(d) yields as functions of tritium concentration and temperature under the 
 = 1 condition. (e) X-ray spectrum of dtµ  in the  -th vibrational states (the colors indicate 0    4)86. "e 
black narrow lines indicate 2p 1s X-rays of dµ (1.997 keV) and tµ (2.033 keV). "e inset of (e) is a close-up 
view of the spectrum. (f) tµ(1s) kinetic energy spectrum of radiative dissociation of ttµ .

+
decay

μ

+or

tµ d

t dµ

dtµ*

+ γ

TY et al., Scientific Reports 12, 6393 (2022).
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S. Sakamoto, K. Ishida, K. Nagamine, Phys. Lett. A 260, 253 (1999).

( )S. Sakamoto et al.rPhysics Letters A 260 1999 253–261256

Fig. 2. Energy spectra of prompt X-rays for target density fs0.01
LHD. The events detected within 240 ns of each muon beam pulse
were selected. The curves are the results of the fitting and the
components of pm X-rays and dm X-rays are also shown respec-
tively.

energy calibration and resolution, the peaks of X-rays
from different muonic hydrogen isotopes can be
easily identified in the spectra of the mixtures of

Ž .hydrogen and deuterium Fig. 2b–d . In the analysis
of these spectra the centroids and the widths of the

gaussian peaks were fixed to the best values obtained
by fitting gaussians to the peaks in the pure hydro-
gen and pure deuterium spectra. K peaks were notg

well separated from the other peaks in the spectra for
the hydrogen-deuterium mixtures. The amplitudes of
K peak were varied so that the ratios to those of Kg b

peaks had been taken to be constant. Hence the ratios
obtained by the fits to the energy spectra of pure
hydrogen and pure deuterium were used as those
constant values. The overall results were, however,
not affected by the choice of those ratios within the
reasonable range.
The q values were obtained by applying Eqs.1s

Ž . Ž .2 and 3 . The X-ray detection efficiencies were
calculated with Monte Carlo method with the exact
geometry of the apparatus taken into account. Reli-

w xable calculations 17 of the X-ray absorption cross
section in material were used, and the overall uncer-
tainty in detection efficiency was less than 5 %. Fig.
3 shows the q as a function of deuterium concen-1s

Ž .tration C . It is clear that the q for the targetd 1s
Ž .density f of 0.01 LHD remains high up to C sd

w x0.7. Another experiment 18 based on the same idea
w xbut with CCD X-ray detectors 12 was carried out at

Ž .the Paul Scherrer Institute PSI . Those data are quite
consistent with our results below C s0.5. The smalld

Fig. 3. q for p– d mixture as a function of deuterium concentra-1s
Ž .tion C . The target density f was 0.01 LHD. Closed circles: thisd

Ž . Ž .experiment RAL , closed squares: this experiment KEK , open
w x w xtriangles: PSI 18 , and curves: theoretical predictions 9 for

Ž .different collision energies ´ of pm atoms.

( )S. Sakamoto et al.rPhysics Letters A 260 1999 253–261256
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were selected. The curves are the results of the fitting and the
components of pm X-rays and dm X-rays are also shown respec-
tively.
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Ž .hydrogen and deuterium Fig. 2b–d . In the analysis
of these spectra the centroids and the widths of the
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by fitting gaussians to the peaks in the pure hydro-
gen and pure deuterium spectra. K peaks were notg
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K peak were varied so that the ratios to those of Kg b
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not affected by the choice of those ratios within the
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The q values were obtained by applying Eqs.1s
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Fig. 3. q for p– d mixture as a function of deuterium concentra-1s
Ž .tion C . The target density f was 0.01 LHD. Closed circles: thisd

Ž . Ž .experiment RAL , closed squares: this experiment KEK , open
w x w xtriangles: PSI 18 , and curves: theoretical predictions 9 for

Ž .different collision energies ´ of pm atoms.

How difficult to observe the X-rays from resonance molecules?

- We need to distinguish dµ(2p->1s) at 2.0 keV from 
the molecular X-ray signal spread in 1.6-2.0 keV. 

- Typical energy resolution of SDD: >100 eV

target: D2
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Transition-edge sensor (TES) for precise X-ray spectrometry

Ne gas target as low as 0.1 atm at room temperature and
studied the pressure dependence. The neon gas contained
20Ne and 22Ne with the natural isotopic abundances of
90.48% and 9.25%. The muons were delivered in a double-
pulse structure containing ∼104 muons per double pulse
with a repetition rate of 25 Hz. The muon momentum
values were optimized to 20.5, 20.5, and 21.5 MeV=c at
neon pressures of 0.1, 0.4, and 0.9 atm, respectively, to
maximize the number of stopped muons within the field of
view of the detector. Typical count rates of muonic x rays
on the whole detector array were 1–3 counts per second.
We employed a 240-pixel TES array developed by the
National Institute of Standards and Technology [31]. For
accurate online energy calibration, we simultaneously
monitored characteristic K x rays from Cr, Co, and Cu
produced by an x-ray generator [27]. Energy calibration of
each TES pixel was carried out by following the procedure
of Refs. [32,33].
We observed the energy shift originating from the

pulsed-mode operation of the muon beam, which can be
understood by thermal crosstalk resulting from high-energy
charged particles accompanying the muon beam injection
[30]. When charged particles, produced by muon decay or
nuclear capture, or scattered by the Ne gas, hit the TES
pixel array, a large fraction of the deposited energy is
converted into heat in the Si frame of the TES pixel,
causing a change in the raw TES waveform that results
from the x-ray detection. The energy shifts in the observed
region were roughly 0.3, 0.4, and 0.5 eVat pressures of 0.1,
0.4, and 0.9 atm. These shifts are corrected by measuring
the peak-energy deviation of the calibration K x-ray peaks
as a function of the detection time with respect to the
pulsed muon beam injection, as well as employing a small
temperature rise observed in the surrounding TES pixels
(see the details in the Supplemental Material [34]). We
evaluated the accuracy of this correction from experimental
results using a Fe foil target. From a comparison of peak
positions of Fe Kα x rays, which are emitted only at the
muon-beam injection and affected by the crosstalk effect, to
the reference value [37,38], we confirmed that the energy
shifts are properly corrected with an error below 0.11 eV.
We obtained x-ray spectra by summing up those from all

TES pixels under normal operation after selecting the
events within a specific time window to extract the muon-
beam induced signals [29]. The x-ray spectrum at a pressure
of 0.9 atm after correction for the thermal crosstalk is
shown in Fig. 1. A muonic x-ray peak from the 5– 4 transi-
tion of μNe is clearly seen at around 6300 eV. The 7–5
transition peak of μNe is also identified at 5480 eV.
The typical expanded spectrum of the 5– 4 transition

peak at a pressure of 0.1 atm is shown in Fig. 2. To
determine the transition energies, the muonic x-ray peaks
were fitted with the curves obtained by a convolution of the
line shape model with the TES response function using
the maximum likelihood method. We also employed a

Bayesian analysis program [39,40] to check correlations
between the fitting parameters. The TES response function
is a Gaussian function accompanied by a low-energy tail,
which originates from the trapping of heat carriers in the
Bi absorber [41]. The function has three parameters: the
energy resolution and the fraction and length of the low-
energy tail. The energy resolution was evaluated by fitting
the μNe peak. We fixed the two tail parameters obtained
from the calibration K x-ray peaks under the off-beam
condition.
The observed μNe peak is a sum of contributions from

two isotopes, 20Ne and 22Ne. Each isotopic component
contains three 5g–4f and three weaker 5f–4d transitions.

FIG. 1. An x-ray spectrum from 5–4 and 7–5 transitions of μNe
at a pressure of 0.9 atm. A muonic x-ray peak from μBe produced
at the Be x-ray window in front of the TES detector, along with
small calibration x-ray peaks, are also identified.

FIG. 2. X-ray spectra from 5–4 transitions of μNe at a pressure
of 0.1 atm. The fitted profiles obtained by summing up μ20Ne and
μ22Necontributions are also shownwith residual errors. The fitting
is carried out by using three spectra at pressures of 0.1, 0.4, and
0.9 atm simultaneously, and the reduced χ2 (number of degrees of
freedom, 284) for the total fitting is evaluated to be 1.26.
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5.5 eV FWHM at 6 keV
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High energy resolution may distinguish the 
molecular X-ray from the dµ X-ray!
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Theoretical studies on the X-ray spectra from ddµ*
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where Krel denotes the kinetic energy of the relative motion of the fragments.
The wave function ψJ,v (θ ) is expressed as

ψJ,v (θ ) =
2∑

c=1

∑

lci,Lc j

∑

i j

(1 ± Pdd )
{
C(v)

ci jlciLc j
(θ ) rlci

c RLc j
c exp

(
−air2

c − AjR2
c

)
sin

(
βAjR2

c

)

+ D(v)
ci jlciLc j

(θ ) rlci
c RLc j

c exp
(
−air2

c − AjR2
c

)
cos

(
βAjR2

c

)}[
Ylci (r̂c) ⊗ YLc j (R̂c)

]
JM, (10)

where M denotes a projection of the total angular momentum
J onto the z axis. c denotes the coordinate system speci-
fied by {rc, Rc} (Fig. 1); Pdd is a permutation operator for
two identical deuterons; ai, Aj , and β are real numbers and
Ylci (Lc j ) denotes the spherical harmonics of angular momentum
quantum number lci(Lc j ). [· · · ] denotes a tensor product of
two angular momentum states given by the linear combina-
tion of spherical harmonics with Clebsch-Gordan coefficients
as defined in Ref. [36]. The β #= 0 introduces oscillating
Gaussian functions [28]. These basis functions are suitable
for describing the vibrationally excited state, the internuclear
wave function of which increases the number of nodes. In this
study, we set β = 1.5.

As the deuteron has spin 1, the total wave function, includ-
ing the spin part, must be symmetric against the permutation
of the two d nuclei. When the two d nuclei configure the
total nuclear spin Snucl = 0 or 2, the spin part is symmetric;
however, in the Snucl = 1 case, the spin part is antisymmetric
against the permutation of the two deuterons. Thus, we select
(1 + Pdd ) for Snucl = 0 and 2 and (1 − Pdd ) for Snucl = 1.
The spatial parity of the wave function is determined by
$ = (−1)lci+Lc j . Hereafter, we distinguish the symmetry of
the ddµ states by the total nuclear spin Snucl, total orbital
angular momentum quantum number J , and the spatial parity
$ (even or odd), and denote the symmetry as 2Snucl+1Je/o.

The convergence with respect to the number of angular
momenta lci and Lc j when using the two coordinate systems
is much faster than the convergence when using a single
coordinate system. The basis functions written in c = 1 and
c = 2 are suited for the description of the dµ-d interaction and
muonic molecular orbital around two deuterons, respectively.
The linear coefficients C(v)

ci jlciLc j
(θ ) and D(v)

ci jlciLc j
(θ ), which are

complex values depending on θ , are determined by Eq. (7).
Hereafter, we denote the total number of basis functions,
namely, the number of linear coefficients, by Nmax.

B. Calculation of resonance-continuum x-ray spectrum

We calculate the radiative decay rates of the ddµ∗ in the
rovibrational state (J, vr ) where vr denotes the vibrational

FIG. 1. Jacobi coordinate systems used in this study.

quantum number. The energy derivative of the radiative decay
rate of the resonance state into a continuum state, dΓRC/dEγ ,
can be calculated as a function of x-ray energy Eγ by dipole
approximation

dΓRC

dEγ

= 4
3
α3E3

γ |〈(C(Ef )|d|(R〉|2, (11)

where (R is a wave function of the resonance state and (C
is an energy-normalized continuum state wave function cor-
responding to the energy Ef . Eγ denotes the x-ray energy,
α is the fine structure constant, and d denotes the electric
dipole moment operator. The energy of the continuum state
Ef satisfies

Ef = E (R)
J,vr

− Eγ , (12)

where E (R)
J,vr

is the resonance energy of ddµ∗.
The dΓRC/dEγ are numerically calculated by the com-

plex coordinate rotation method [24,29,30,37]. The energy-
normalized continuum state wave function satisfies

|(C(Ef )〉 〈(̄C(Ef )| = 1
2iπ

[G−(Ef ) − G+(Ef )]. (13)

The G±(Ef ) are the Green functions of the Hamiltonian on the
real axis as

G±(Ef ) = 1
Ef ± iε − H

, (14)

where ε is a small positive number to avoid singularity. The
Green function of the complex-rotated Hamiltonian H (θ ) is
related to G±(Ef ) as

G±(Ef ) = R(∓θ )
1

Ef − H (±θ )
R(±θ ), (15)

for θ > 0. Equation (13) can be rewritten by Eq. (15) as

|(C(Ef )〉 〈(̄C(Ef )|

= 1
2iπ

[
R(θ )

1
Ef − H (−θ )

R(−θ ) − R(−θ )
1

Ef − H (θ )
R(θ )

]
.

(16)

We consider the eigenfunctions {ψJf ,v (θ )} of H (θ ), where
Jf is the total angular momentum quantum number of the
whole system of the decay fragments. Under the dipole ap-
proximation, Jf = J ± 1. Because the complex-rotated wave
functions satisfy the following closure relation in a finite re-
gion of space [28]:

∑

v

|ψJf ,v (θ )〉 〈ψ̄Jf ,v (θ )| = 1, (17)

012811-3

￼18Resonance state wavefunction
E. Hiyama et al., Prog. Part. Nucl. Phys. 51, 223 (2003).

⟨ψ̄n(θ) |H(θ) |ψn′￼(θ)⟩ = En(θ)δnn′￼

Bipolar spherical harmonics

YAMASHITA, YASUDA, AND KINO PHYSICAL REVIEW A 111, 012811 (2025)

Eq. (16) becomes

|!C(Ef )〉 〈!̄C(Ef )| = 1
2iπ

[
R(θ ) |ψJf ,v (θ )〉 〈ψ̄Jf ,v (θ )| R(−θ )

Ef − ĒJf ,v (θ )

− R(−θ ) |ψJf ,v (θ )〉 〈ψ̄Jf ,v (θ )| R(θ )
Ef − EJf ,v (θ )

]
.

(18)

We note that the set of eigenfunctions obtained by the Gaus-
sian expansion method becomes approximately a complete set
in a finite region [28]. Using Eq. (18), we have the dΓRC/dEγ

in terms of {ψJf ,v (θ )} as in [24,30,38]

dΓRC

dEγ

= 4
3
α3E3

γ

1
π

Im
vmax∑

v=1

[ 〈ψ̄Jf ,v (θ )|d(θ )|!R(θ )〉2

EJf ,v (θ ) − Ef

]
, (19)

where d(θ ) is the complex-rotated electric dipole moment
operator. The !R(θ ) is the rotated wave function of the res-
onance state, which is a member of {ψJ,v (θ )}. For the present
system, the wave function of the resonance state !R has a
small scattering component, and the complex-rotated wave
function, !R(θ ), can be expanded in terms of L2 basis func-
tions with sufficient accuracy. The number of eigenfunctions
vmax is less than the total number of basis functions Nmax,
namely, vmax ! Nmax. We will see in the following section that
dΓRC/dEγ converges as increasing vmax. Typically, we use
vmax ∼ 400, which is much smaller than Nmax ∼ 104.

To estimate the accuracy of our calculations, we calculate
dΓRC/dEγ in both length and velocity gauges. Since the accu-
racy of the long-range component of the wave function affects
the length-gauge calculation than the velocity-gauge one, the
latter is better than the former because the complex coordinate
rotation method artificially dampens the outgoing component.

III. RESULTS AND DISCUSSION

A. Energy levels of resonance states

To examine the accuracy of the resonance state wave func-
tions, we investigated the ddµ∗ resonance energies of S, P,
D, and F waves using a stabilization method [39–41]. The
resonance energy levels of the S and P waves obtained in
this study are listed in Table I with the vibrational quantum
number vr and compared with those of several previous stud-
ies [19,23,24]. Table I expresses the resonance energies by
quasi-binding energies,

εJ,vr = E (n=2)
th − E (R)

J,vr
, (20)

where E (n=2)
th denotes the dµ(n = 2) + d threshold energy.

Our calculations agree well with the latest complex coordi-
nate rotation calculations [24] for 1,5Se and are in reasonable
agreement with the stabilization calculations [19] for 3Se,
3Po, and 1,5Po. The nonradiative decay widths are small and
the complex coordinate rotation trajectories of the resonance
states are located close to the real axis. While the trajectories
do not show a clear pole except for the v = 0∗ state in 1,5Po,
we estimate the resonance widths by three standard deviations
of the complex energies near the real axis for several θ . The
estimated resonance widths are less than ! 10−7 hartree or
10 µeV, which is smaller than the significant digits of reso-
nance energies listed in Table I. In the subsequent calculations

TABLE I. Comparison of resonance energies calculated in this
study with those of previous studies. These values are given in elec-
tron volts relative to the dµ(n = 2) + d threshold energy. Resonance
widths of these resonance states are estimated to be smaller than the
significant values of this work (less than 10 µeV).

Symmetry vr This work Ref. [24] Ref. [23] Ref. [19]

1,5Se 0 218.1111 218.111 567 218.112 218.113
1,5Se 1 135.2785 135.279 003 135.279 135.278
1,5Se 2 72.9662 72.967 058 72.697 72.962
1,5Se 3 31.9011 31.901 769 31.902 31.884
1,5Se 4 12.6165 12.616 688 12.617 12.606
1,5Se 5 5.3112 5.311 346 5.311 5.304
1,5Se 6 2.2750 2.275 273 2.210
1,5Se 7 0.9810 0.981 232
1,5Se 8 0.4241
3Se 0 21.1551 21.156
3Se 1 9.4149 9.415
3Se 2 4.0801 4.080
3Se 3 1.7656 1.603
3Se 4 0.7645
3Se 5 0.3311
3Po 0 211.9236 211.926
3Po 1 130.3486 130.348
3Po 2 69.2351 69.225
3Po 3 29.5255 29.504
3Po 4 11.4945 11.478
3Po 5 4.7732 4.758
3Po 6 2.0157 1.913
3Po 7 0.8567
3Po 8 0.3650
1,5Po 0∗ 22.6458 22.648
1,5Po 0 20.1211 20.122
1,5Po 1 8.8046 8.805
1,5Po 2 3.7575 3.749
1,5Po 3 1.6023 1.395
1,5Po 4 0.6837
1,5Po 5 0.2918

of the radiative decay, we verified that the x-ray spectra and ra-
diative decay widths are reproduced even if we use resonance
state wave functions corresponding to the slightly different
eigenenergies within the nonradiative widths.1

By applying the Born-Oppenheimer approximation to the
d+d+µ system, three adiabatic potential energy curves, 3dσg,
4 f σu, and 2pπu, are obtained. They are attractive at long inter-
nuclear distances and approach asymptotically to the dµ(n =
2) + d threshold energy. Both 3dσg and 4 f σu potential energy
curves are inversely proportional to the square of the distance
at long distances. In contrast, the 2pπu potential is inversely
proportional to the fourth power of the distance. Figure 2
illustrates these adiabatic potential energy curves as well as
1sσg and 2pσu curves. The resonance states of 1,5Se and 3Po

belong to the 3dσg adiabatic potential energy curve. The other

1Note in revision: In the present calculation, the initial and final
wave functions are independently obtained. An interference between
the radiative decay and nonradiative decay processes will be a subject
of future studies.
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resonance states is estimated to be significantly higher than
that of ddµ [7–9].

The fate of the 2s state of the muonic atom has involved
a puzzle. The quenching rate of the 2s state of the muonic
atom (pµ in the H2 target and dµ in the D2 target) is smaller
than that predicted by a conventional cascade model [15].
As the formation of the muonic molecules in the resonance
states quenches the 2s state of the muonic atom, the reaction
(1) can be a mechanism to explain the observed population
of the 2s state of the muonic atoms. Furthermore, deexcita-
tion processes via dtµ∗ in the D2-T2 mixture target increase
dµ(1s) population and can explain the observed µCF cycle
rate [5,7,9]. However, a cascade model has recently been
developed [10–12] that indicates the importance of the direct
Coulomb decay and collision-induced radiative quenching,
which explains the observed population of pµ(2s) and dµ(2s)
without assuming the reaction (1).

In this study, we calculate the x-ray spectra of the radiative
decay of the resonance states ddµ∗ into the continuum state,

ddµ∗ → dµ(1s) + d + γ , (3)

or into a bound state,

ddµ∗ → ddµ + γ . (4)

The process (3) produces x-rays with characteristic energy
profiles depending on their rotational and vibrational states
[23,24] in the energy range of 1.5–1.997 keV. The process
(4) produces, in contrast, monoenergetic x-rays whose energy
differs from the Kα x-rays of dµ (1.997 keV). The x-ray spec-
tra, therefore, can be footprints demonstrating the presence of
these molecules. Thus far, it has been difficult to distinguish
the x-rays of the process (3) having a broad spectrum from
mono-energetic Kα x-rays because of the energy resolution
of the detectors. Recently, high-resolution x-ray spectroscopy
with microcalorimeters has been successfully applied to de-
termine the energy levels of muonic atoms [25–27] and show
sufficient performance for x-ray energy of several keV with
FWHM of 6 eV. The x-ray spectra from ddµ∗ obtained via
the process (3) were theoretically reported in previous studies
[23,24] for several states.

To analyze the forthcoming experiments, as ddµ∗ is ex-
pected to form in various rotational and vibrational states,
more comprehensive study on the x-ray spectra is required.
Furthermore, the x-ray intensity from process (4) has not been
previously investigated while the process (4) could introduce
a direct pathway from metastable muonic atoms to the bound
states of muonic molecules and play an important role in the
µCF cycle. Thus, this study investigates the radiative decay
of muonic molecules in the resonance states and predicts
the x-ray spectra from the rotational states of J = 0–3 and
vibrational states of υ = 0–8.

We solve the Schrödinger equation for a three-body system
using the Gaussian expansion method [28] after separating
the center-of-mass motion. The transition rates are calcu-
lated using the complex scaling method [29,30] under the
dipole approximation. We first examine the accuracy of x-ray
spectra, and investigate their characteristic shape associated
with radial distribution functions of the resonance states. We
also reveal the radiative decay mechanism from the point of
view of kinetic energy distributions of the decay fragments in

comparison with adiabatic approximations because the kinetic
energy distribution of the decay fragments is important to
evaluate epithermal muonic atoms [31–33] in µCF cycle. Fi-
nally we discuss the competition between the radiative decays
(3) and (4).

The remainder of this paper is organized as follows.
Section II outlines the theoretical calculations. Section III
presents the x-ray spectra of each resonance state, angular
momentum dependency of the x-ray spectra, and radiative
decay rate into the bound states. Section IV summarizes the
discussion. Atomic units (a.u.; me = h̄ = e = 1) and muonic
atomic units (m.a.u.; mµ = h̄ = e = 1) are used throughout
this paper, except when specified otherwise.

II. THEORY

A. Complex coordinate rotation method for three-body systems

We consider the three-body Hamiltonian involving kinetic
energy operators (separated from the motion of the center of
mass) and the Coulomb potential energy operators:

Ĥ =
3∑

i=1

− 1
2mi

∇2
ri

+ 1
2mG

∇2
rG

+ 1
r12

− 1
r13

− 1
r23

, (5)

where mi is the mass of particle i (i = 1: d, i = 2: d, and
i = 3: µ), mG is the mass of the system, ∇ri is a differential
operator for the position vector ri, ∇rG is a differential op-
erator for the center of mass, and ri j is the relative distance
between the particles i and j. We use the deuteron-muon mass
ratio md/mµ = 17.751 674 54 [34] for comparison with the
previous study [24]. The muon-electron mass ratio mµ/me =
206.768 283 [35] is used throughout this work.

We adopt a complex coordinate rotation (CCR) method
[29] to calculate the resonance states and their radiative de-
cays. A CCR Hamiltonian H (θ ) is formally written as

H (θ ) = R(θ )HR(−θ ), (6)

where R(θ ) denotes the complex rotation operator. H (θ ) cor-
responds to the Hamiltonian where a complex factor of eiθ

scales the distance r as r → reiθ .
The eigenfunctions ψJ,v (θ ) of H (θ ) are expanded in terms

of L2 integrable basis functions and obtained by solving the
generalized complex eigenvalue problem,

〈ψ̄J,v′ (θ )|H (θ )|ψJ,v (θ )〉 = EJ,v (θ )δv′v, (7)

where J is the total orbital angular momentum quantum
number, v = 1, . . . denotes the index of the eigenstates, and
ψ̄J,v (θ ) denotes the complex conjugate of ψJ,v (θ ), except for
the angular part. For resonance states, the complex eigen-
values EJ,v (θ ) obtained by the CCR method take stationary
values at θ = θ ′ on the complex energy plane, with the real
part for the resonance energy E (R)

J,v and the imaginary part for
the resonance width Γ :

EJ,v (θ ′) = E (R)
J,v − iΓ /2. (8)

For continuum states, the eigenvalues exist on a line rotated by
−2θ from the real axis, centered around the threshold energy
Eth as

EJ,v (θ ) ( Eth + Krel(cos 2θ − i sin 2θ ), (9)
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where Krel denotes the kinetic energy of the relative motion of the fragments.
The wave function ψJ,v (θ ) is expressed as

ψJ,v (θ ) =
2∑

c=1

∑

lci,Lc j

∑

i j

(1 ± Pdd )
{
C(v)

ci jlciLc j
(θ ) rlci

c RLc j
c exp

(
−air2

c − AjR2
c

)
sin

(
βAjR2

c

)

+ D(v)
ci jlciLc j

(θ ) rlci
c RLc j

c exp
(
−air2

c − AjR2
c

)
cos

(
βAjR2

c

)}[
Ylci (r̂c) ⊗ YLc j (R̂c)

]
JM, (10)

where M denotes a projection of the total angular momentum
J onto the z axis. c denotes the coordinate system speci-
fied by {rc, Rc} (Fig. 1); Pdd is a permutation operator for
two identical deuterons; ai, Aj , and β are real numbers and
Ylci (Lc j ) denotes the spherical harmonics of angular momentum
quantum number lci(Lc j ). [· · · ] denotes a tensor product of
two angular momentum states given by the linear combina-
tion of spherical harmonics with Clebsch-Gordan coefficients
as defined in Ref. [36]. The β #= 0 introduces oscillating
Gaussian functions [28]. These basis functions are suitable
for describing the vibrationally excited state, the internuclear
wave function of which increases the number of nodes. In this
study, we set β = 1.5.

As the deuteron has spin 1, the total wave function, includ-
ing the spin part, must be symmetric against the permutation
of the two d nuclei. When the two d nuclei configure the
total nuclear spin Snucl = 0 or 2, the spin part is symmetric;
however, in the Snucl = 1 case, the spin part is antisymmetric
against the permutation of the two deuterons. Thus, we select
(1 + Pdd ) for Snucl = 0 and 2 and (1 − Pdd ) for Snucl = 1.
The spatial parity of the wave function is determined by
$ = (−1)lci+Lc j . Hereafter, we distinguish the symmetry of
the ddµ states by the total nuclear spin Snucl, total orbital
angular momentum quantum number J , and the spatial parity
$ (even or odd), and denote the symmetry as 2Snucl+1Je/o.

The convergence with respect to the number of angular
momenta lci and Lc j when using the two coordinate systems
is much faster than the convergence when using a single
coordinate system. The basis functions written in c = 1 and
c = 2 are suited for the description of the dµ-d interaction and
muonic molecular orbital around two deuterons, respectively.
The linear coefficients C(v)

ci jlciLc j
(θ ) and D(v)

ci jlciLc j
(θ ), which are

complex values depending on θ , are determined by Eq. (7).
Hereafter, we denote the total number of basis functions,
namely, the number of linear coefficients, by Nmax.

B. Calculation of resonance-continuum x-ray spectrum

We calculate the radiative decay rates of the ddµ∗ in the
rovibrational state (J, vr ) where vr denotes the vibrational

FIG. 1. Jacobi coordinate systems used in this study.

quantum number. The energy derivative of the radiative decay
rate of the resonance state into a continuum state, dΓRC/dEγ ,
can be calculated as a function of x-ray energy Eγ by dipole
approximation

dΓRC

dEγ

= 4
3
α3E3

γ |〈(C(Ef )|d|(R〉|2, (11)

where (R is a wave function of the resonance state and (C
is an energy-normalized continuum state wave function cor-
responding to the energy Ef . Eγ denotes the x-ray energy,
α is the fine structure constant, and d denotes the electric
dipole moment operator. The energy of the continuum state
Ef satisfies

Ef = E (R)
J,vr

− Eγ , (12)

where E (R)
J,vr

is the resonance energy of ddµ∗.
The dΓRC/dEγ are numerically calculated by the com-

plex coordinate rotation method [24,29,30,37]. The energy-
normalized continuum state wave function satisfies

|(C(Ef )〉 〈(̄C(Ef )| = 1
2iπ

[G−(Ef ) − G+(Ef )]. (13)

The G±(Ef ) are the Green functions of the Hamiltonian on the
real axis as

G±(Ef ) = 1
Ef ± iε − H

, (14)

where ε is a small positive number to avoid singularity. The
Green function of the complex-rotated Hamiltonian H (θ ) is
related to G±(Ef ) as

G±(Ef ) = R(∓θ )
1

Ef − H (±θ )
R(±θ ), (15)

for θ > 0. Equation (13) can be rewritten by Eq. (15) as

|(C(Ef )〉 〈(̄C(Ef )|

= 1
2iπ

[
R(θ )

1
Ef − H (−θ )

R(−θ ) − R(−θ )
1

Ef − H (θ )
R(θ )

]
.

(16)

We consider the eigenfunctions {ψJf ,v (θ )} of H (θ ), where
Jf is the total angular momentum quantum number of the
whole system of the decay fragments. Under the dipole ap-
proximation, Jf = J ± 1. Because the complex-rotated wave
functions satisfy the following closure relation in a finite re-
gion of space [28]:

∑

v

|ψJf ,v (θ )〉 〈ψ̄Jf ,v (θ )| = 1, (17)

012811-3

r → reiθ : En(θ) = Er − iΓ/2
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dΓγ

dEγ
=

4
3

α3E3
γ ⟨ΨE |d |Ψi⟩

2

dΓγ

dEγ
=

4
3

α3E3
γ

1
π

Im∑
n [ ⟨ψ̄n(θ) |d(θ) |Ψi(θ)⟩2

En(θ) − Ef ]⟨ψ̄n(θ) |H(θ) |ψm(θ)⟩ = En(θ)δnm

|ΨE⟩⟨ΨE | =
1

2iπ (G−(E) − G+(E)) G±(E) =
1

E ± iϵ − H

G±(E) = R(−θ)
1

E − H(θ)
R(θ)H(θ) = R(θ)HR(−θ)

Complex coordinate rotation

G+(E) : θ > 0, G−(E) : θ < 0

|ΨE⟩⟨ΨE | =
1

2iπ (R(θ)
1

E − H(−θ)
R(−θ) − R(−θ)

1
E − H(θ)

R(θ))
Basis function expansion

Dipole approximation for resonance-continuum transition

Analytic continuation

A Buchleitner et al 1994 J. Phys. B: At. Mol. Opt. Phys. 27 2663

(r → eiθr)

X-ray spectrum calculation
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FIG. 4. Convergence of x-ray spectrum for the 1,5S e vr = 0 state
against the complex coordinate rotation angle θ.

Energy of x−ray (eV)

In
te

ns
ity

 (k
eV

−1
 p

s−
1 )

1.60 1.65 1.70 1.75 1.80 1.85 1.90

0.0

0.2

0.4

0.6

0.8

1.0
vmax = 60
vmax = 50
vmax = 40
vmax = 30
vmax = 20
vmax = 10

FIG. 5. Convergence of x-ray spectrum for 1,5S e vr = 1 state against
the maximum number of eigen functions vmax.

physically meaningful dipole series are reproduced for high vr
states.

To examine the validity of the approximation for the cal-
culation of the x-ray spectra described by Eq. (19), we ex-
amine the convergence of the x-ray spectra by increasing the
number of eigen functions {ψJf ,v(θ)}, vmax, used in Eq. (19).
We sorted {ψJf ,v(θ)} in ascending order of Re EJf ,v(θ) and in-
creased vmax. Figure 5 presents an example of the conver-
gence behavior against vmax for the 1,5S e vr = 1 state. In this
calculation, θ = 0.15 is used. We conclude that spectra are
converged against the vmax ≥ 50. A drastic change occurs be-
tween vmax = 30 and 40 where a low energy peak appears.
Real parts of the complex eigen energies, i.e. kinetic energy

Energy of x−ray (eV)

In
te

ns
ity

 (k
eV

−1
 p

s−
1 )

1.6 1.7 1.8 1.9 2.0
0.0

0.5

1.0

1.5

2.0
Velocity gauge
Length gauge

FIG. 6. Comparison of the velocity and length gauge calculations for
the 1,5S e vr = 2 state.

Krel cos 2θ in Eq (9), Re EJf ,v=30(θ)−E(n=1)
th = 0.000 013 m.a.u.

and Re EJf ,v=40(θ) − E(n=1)
th = 0.027 767 m.a.u., are associated

with the x-ray energies Eγ of 1.86 keV and 1.71 keV, respec-
tively, with Eγ = E(R)

J,v − Re EJf ,v(θ). The presented conver-
gence behavior suggests that {ψJf ,v} for v ≤ 30 are not enough
for the closure relation in Eq. (17); as the members of {ψJf ,v}
increase, the energy range of the x-ray spectra becomes wider.

We also examine the x-ray spectrum by comparing the
length- and velocity-gauge calculations. Figure 6 presents an
example of the length- and velocity-gauge calculations for the
1,5S e vr = 2 state using the same basis functions and complex
rotation angle. The x-ray spectra obtained using two kinds of
gauges exhibit excellent agreement with each other, confirm-
ing the validity of our calculations.

C. Characteristic shape of x-ray spectrum

Figures 7, 8, and 9 present a summary of the x-ray spectra
of radiative decay to the continuum states for each resonance
state. The maximum x-ray energy corresponds to the energy
interval between the resonance energy E(R)

J,vr
and dµ(n = 1) + d

dissociation threshold energy E(n=1)
th as follows:

Eγ ≤ E(R)
J,vr
− E(n=1)

th . (25)

For the J = 0 resonance states, radiative decay results in a
Jf = 1 continuum state within the dipole approximation. As
we do not include spin-dependent interactions between the
two deuterons, the total nuclear spin angular momentum S nucl
is conserved throughout the radiative decay. For J ≥ 1 res-
onance states, the radiative decay results in Jf = J ± 1 con-
tinuum states. We distinguish between the J-increasing decay
and J-decreasing decay by denoting ∆J = ±1.

(J = 0,v = 2)

Accuracy is checked by 
comparing length- and velocity-
gauge calculations
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Fig. 12 An example figure caption – the image is from the Physical Chemistry Chemical Physics cover gallery.
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Fig. 10 An example figure caption – the image is from the Physical Chemistry Chemical Physics cover gallery.
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Fig. 11 An example figure caption – the image is from the Physical Chemistry Chemical Physics cover gallery.
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X-ray spectra from v=0-8, J=0-3
TY et al., Phys. Rev. A 111, 012811 (2025).
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Experiment at J-PARC with TES detector & solid D2 target

Y. Toyama et al., EXA conference (2024).

Note: We used pure D2 instead of D2-T2 mixture as the first step

Yuichi Toyama

Experimental setup

 µ- beam was irradiated to the 
solid deuterium target.

 ddµ* was produced in the target
 Dissociative X-rays of ddµ* were 

detected by TES detector
 Transmittance: ~40%@2 keV

 Calibration X-rays from X-ray 
tube were measured 
simultaneously.

 Other detectors
 Plastic scintillator + PMT (for decay e-)
 SDD (for reference)
 MiniPIX (for proton, scattered µ-)

Calib. x-rays

X-ray tube

TES
detector

ddμ*
x-rays

Solid D2
target

Feb 5 - 11, 2023µ- beam

Vacuum
(1x10-6 Pa) Thermal

shield
(70 K)

2024/8/29

12

EXA/LEAP2024 in Wien

from top
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Y. Toyama et al., EXA conference (2024).
Yuichi Toyama

Solid deuterium target system
Solid deuterium target system
 Base: Ag foil (100 µm)
 Target size: Φ60
 Thickness: 1 mm
 Temperature: ~3 K (Liq. He coolant)
 Chamber pressure: 1x10-6 Pa

Al thermal shield
(before attaching window)

X-ray window
(t=2.5 µm, mylar)

P. Strasser et al. Nucl. Instrum. Meth. Phys. Res. A 460, 451 
(2001).

D2 gas Diffuser

movable

 Stable operation during the measurement.

2024/8/29

15

Ag foil

Cu

Ag foil

Diffuser

EXA/LEAP2024 in Wien

Solid deuterium target
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Results of the experiment

Yuichi 
Toyama

ddµ* 解離X線

● ddµ* 解離X線を1.7—2.0 keVに観測

●振動量子状態の分離
● 3dσg v=1, 2, 3および4fσu v=0のX線形状でほぼ再現可能

● Vesman機構+Auger過程を示唆

2024/3/18

12

dµ Kα
(FWHM~8eV)

dµ Kβ

ddµ* Brems. b.g.

Preliminary

Energy [eV]
1500 160

0
1700 1800 1900 2000 2100 2200 2300
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3dσg v=2 3dσg v=3
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dμ Kα

Preliminary

JPS meeting 2024 s (online)

to be submitted



Muon catalyzed fusion,  T. Yamashita (Tohoku Univ.)

￼25

Yuichi 
Toyama

ddµ* 解離X線

● ddµ* 解離X線を1.7—2.0 keVに観測

●振動量子状態の分離
● 3dσg v=1, 2, 3および4fσu v=0のX線形状でほぼ再現可能

● Vesman機構+Auger過程を示唆
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Preliminary

JPS meeting 2024 s (online)

Results of the experiment: Close-up view

to be submitted
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How important is this discovery?

• µCF kinetics including dtµ* was first proposed in 1995. 
• Several X-ray spectra were first calculated in 2003. 
• However, it has never been proved experimentally. 
• Our ddµ* evidence is a breakthrough in µCF studies.

First Observation of muonic molecules in resonance state

Providing a NEW probe for µCF

• µCF has been studied by fusion neutrons & unresolved X-rays. 
• The resolved X-ray spectrum contains much more rich 

information about the cascade processes.  
e.g., Intensity ratio of the molecular X-ray to the atomic X-ray 
provides reaction rates/temperature of excited muonic atoms.
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15

TABLE IV. Several states of ddµ∗ and dtµ∗ that have a high branching ratio resulting in a bound state muonic molecule. The total angular
momentum and the vibrational quantum number of the bound state are denoted as Jf and vb, respectively. Eγ denotes the monoenergetic x-ray
energy.

Symmetry vr E(R)
J,vr

(m.a.u.) εJ,vr (eV) ΓRC (ps−1) Jf vb Eγ (eV) ΓRB (ps−1) ΥRB

ddµ∗
3De 0∗ −0.120 109 9.9880 5.87[−2] 1 1 1989.35 5.62[−2] 0.49

1,5Po 0∗ −0.122 359 22.6458 8.19[−2] 0 1 2010.56 3.51[−2] 0.30
3S e 0 −0.122 094 21.1551 5.77[−2] 1 1 1978.18 5.66[−3] 0.09
3De 0 −0.121 559 18.1432 6.01[−2] 1 1 1981.19 3.44[−3] 0.05

dtµ∗
D 7 −0.121 778 7.369 7.62[−2] 1 1 2026.72 2.68[−2] 0.35
P 4 −0.123 874 19.160 9.51[−2] 0 1 2049.10 2.50[−2] 0.26
S 0 −0.159 195 217.887 7.14[−2] 1 1 1816.19 3.01[−3] 0.04
D 1 −0.156 357 201.927 7.37[−2] 1 1 1832.16 2.79[−3] 0.04
D 5 −0.122 998 14.231 6.14[−2] 1 1 2019.85 1.39[−3] 0.02
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FIG. 15. Energy diagram of resonance and bound energy levels for (a) ddµ and (b) dtµ. The red arrows highlight the transitions with a high
branching ratio into the bound state.

distribution of the decay fragments which shows that the ra-
diative decay of ddµ∗ produces muonic atoms with several
tens eV. The kinetic energy distribution deviates from that de-
rived from the adiabatic approximation, indicating the impor-
tance of the non-adiabatic treatment. The radiative decay can
be a source of epi-thermal muonic atoms in µCF cycle.

We also calculated the radiative decay rates into the bound
state, and compared them with the radiative decay rates into
the continuum. We found that some states of ddµ∗ and dtµ∗
demonstrate significantly high branching ratios into the bound
state, which can be a fast track in µCF because the efficient

formation of dtµ∗ and subsequent radiative decay can skip
rate-limiting processes of µCF cycle, namely, the muon trans-
fer from dµ(1s) to triton and muonic molecule formation via
the Vesman mechanism. Since the formation of the dtµ∗ is
based on the energy matching between the formation energy
and excitation energy of the D2, the formation of the dtµ∗ re-
lated to the fast track could be induced by changing the tem-
perature and population of rovibrational level distribution of
D2.

Novel transition from resonance to bound state

Υ =
ΓRB

ΓRB + ΓRC

We theoretically discovered that some resonance states show  
a high branching ratio directly resulting in a bound state molecule.

TY et al., Phys. Rev. A 111, 012811 (2025).

(immediately undergoes fusion)
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Possible application of RB transition: Fast track

D2/T2

µ

tµ

dtµ

α + n + µ

µα

dµ
dtµ*

tµ(2s)>1010 s–1

Fast track

108 s–1

108 s–1

1012 s–1

1010–1012 s–1

W

Rate Limiting

De-excitation rate of tµ(2s) via dtµ* 
into dtµ (if selected) is faster than 
ordinary Vesman formation of dtµ 
from tµ(1s), rate-limiting process.

μ dμ

tμ

dtμ

α + n + μ

αμ

𝖣𝟤/𝖳𝟤

Conventional model New model w/ resonance-bound path
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Summary

• We are reactivating µCF studies in these years. 
• µCF could be used as neutron source, energy 

production, and a negative muon moderator.  
• Theoretical predictions stimulated new experiments. 
• Experiments at J-PARC MUSE with a new X-ray detector 

answered a long-standing question in µCF kinetics.

Future experiments

• Probe dtµ* X-rays using D2-T2 mixture target 
• Control the spontaneous formation of the ddµ* and dtµ* 

• Reveal the target dependency of the X-ray spectrum
(Solid, Liquid, Dense gas, etc…)

We want to …


