$\mu ightarrow e$ conversion in nuclei: Summary of a recent ECT* workshop

Frederic Noël, Universität Bern, Institute for Theoretical Physics

Muon4Future 2025 27.05.2025

F. Noël (Uni Bern, ITP)

Workshop on LFV change in nuclei at ECT*

Workshop about $\mu \rightarrow e$ conversion in nuclei: organized by Karim Bennaceur & Sacha Davidson

<u>Goal:</u>

Bring together lepton, $\chi PT/nucleon$ and nuclear theorists, in order to improve the multiscale theoretical rate calculations [...] to the accuracy required by upcoming experiments.

Specific Focus:

- Overlap integrals
- Necessary/Possible precision & uncertainties

n 2	rtu	nin	an	tc.
pa		up	an	LJ.

Pierre	Arthuis	IJCLab Orsay, CNRS & U. Paris- Saclay
Karim	Bennaceur	Université Claude Bernard Lyon 1, IP2I
Cristina	Carloganu	LPCA/IN2P3/CNRS
Vincenzo	Cirigliano	Institute for Nuclear Theory, University of Washington
Andrzej	Czamecki	University of Alberta
Sacha	Davidson	IN2P3, CNRS
Jacek	Dobaczewski	University of York
Matthias	Heinz	Oak Ridge National Laboratory
Lotta	Jokiniemi	TRIUMF / TU Darmstadt
Markus	Kortelainen	University of Jyväskylä
Yoshitaka	KUNO	Osaka University
Kilian	Möhling	TU Dresden
Frederic	Noti	ITP, AEC, Uni Bern
Paride	Paradisi	University of Padua and INFN
Joe	Sato	Yokohama National University
Dominik	Stöckinger	TU Dresden
Yuichi	Uesaka	Dokkyo Medical University
Ubirajara	van Kokk	ECT*

Disclaimer

Biased summary with respect to my background and interests

What is $\mu ightarrow e$ conversion? (theorist's perspective)

• Experimental Setup/Preparation:

0

What is $\mu \rightarrow e$ conversion? (theorist's perspective)

• Experimental Setup/Preparation:

 e^- with $qpprox m_\mu ~~
ightarrow$ conceptionally very simple

What is $\mu ightarrow e$ conversion? (theorist's perspective)

• Experimental Setup/Preparation:

- Experimental signature:
 - e^- with $qpprox m_\mu ~~
 ightarrow$ conceptionally very simple
- $\circ~$ Current best limits on Gold and Titanium [SINDRUM II]: Br(Au $\mu^- \rightarrow$ Au $e^-) < 7 \cdot 10^{-13}$ Br(Ti $\mu^- \rightarrow$ Ti $e^-) < 6.1 \cdot 10^{-13}$
- Next generation of experiments measuring on Aluminum: Mu2e & COMET (+ Upgrades) [Talks: tomorrow morning]

Experimental Setup (COMET as an example)

• COMET (Phase II) [Workshop talks: Yoshitaka Kuno & Cristina Carloganu]

Experimental Setup (COMET as an example)

• COMET (Phase II) [Workshop talks: Yoshitaka Kuno & Cristina Carloganu]

Major experimental advances upcoming:

μ⁻N → e⁻N			Mu2e	Γ	lu2e-II with PIP-II	
(7 x 10 ⁻¹³)	Sensitivity:	COMET Phase-I	5	COMET Phase-II	10 ⁻¹⁸	PRISM →

• To access heavy nuclei: PRISM necessary to remove pions

T. NOEL (OIL BEIL, TE	F.	Noël	(Uni	Bern,	ITP
-----------------------	----	------	------	-------	-----

Backgrounds and related processes

While backgrounds are extremely small, we are reaching precision levels where they start to become relevant

Backgrounds and related processes

While backgrounds are extremely small, we are reaching precision levels where they start to become relevant

- Backgrounds:
 - $\circ~$ decay in orbit: $\mu^- \rightarrow \nu_\mu \bar{\nu}_e e^-$
 - (radiative) muon capture
 - $\circ~(\mbox{radiative})$ pion capture
 - $\circ~$ cosmic radiation
- $\circ\,$ historically muon capture used as normalization for $\mu \to e$

Backgrounds and related processes

While backgrounds are extremely small, we are reaching precision levels where they start to become relevant

- Backgrounds:
 - $\circ~$ decay in orbit: $\mu^- \rightarrow \nu_\mu \bar{\nu}_e e^-$
 - \circ (radiative) muon capture
 - $\circ~(\mbox{radiative})$ pion capture
 - cosmic radiation
- $\circ\,$ historically muon capture used as normalization for $\mu \to e$

- $\circ\,$ Processes from muonic atoms require reliable inputs for $\ldots\,$
 - ... nuclear structure (ab-initio) [Workshop talk: Lotta Jokiniemi]
 - ... muon/electron wave functions [Workshop talk: Yuichi Uesaka]
- $\circ~$ Same for $\mu \rightarrow e$ conversion and other nuclear processes like $0 \nu \beta \beta$

Theoretical description

Experimental advances motivate improvements of the theoretical description

Theoretical description

Experimental advances motivate improvements of the theoretical description

- Testing specific BSM models for CLFV limits:
 - Study of various models (LQ, ν_R, ...)
 [Workshop talk on vector-like leptons: Kilian Möhring]
 - RG evolution tools now extend to CLFV [Workshop talk on FlexibleSUSY: Dominik Stöckinger]

Theoretical description

Experimental advances motivate improvements of the theoretical description

- Testing specific BSM models for CLFV limits:
 - Study of various models (LQ, ν_R, ...)
 [Workshop talk on vector-like leptons: Kilian Möhring]
 - RG evolution tools now extend to CLFV [Workshop talk on FlexibleSUSY: Dominik Stöckinger]
- "Model-independent" studies using EFTs
 [Workshop talk on (nuclear) EFTs: Bira van Kolck]
 - Many LFV effective operators can contribute
 - RG evolution and interference of SMEFT operators studied until EW scale [Crivellin et al., 2017,...]
 - $\circ\,$ Tower of EFTs necessary to reach low-energy scale

Many different scales matter:

Objectives:

- Compare different LFV probes
- Discriminate BSM operators
- Propose target materials
 to maximize complementarity

Many different scales matter:

Objectives:

- Compare different LFV probes
- Discriminate BSM operators
- Propose target materials to maximize complementarity
- Control theory uncertainties:
 - Hadronic matrix elements
 - Nuclear response
 - Coulomb corrections

At all steps uncertainties need to be controlled!

F. Noël (Uni Bern, ITP)

- Hadronic matrix elements: from LatticeQCD & Phenomenology
 - Relevance of momentum dependence? (up to 5% ?) [Workshop talk: Vincenzo Cirigliano]

- Hadronic matrix elements: from LatticeQCD & Phenomenology
 Relevance of momentum dependence? (up to 5% ?) [Workshop talk: Vincenzo Cirigliano]
- Nuclear structure:
 - Empirical methods: shell-model, DFT, ...
 - \rightarrow Covers most of the nuclid chart (ongoing developments)
 - [Workshop talks: Jacek Dobaczewiski & Markus Kortelainen]
 - \rightarrow Uncertainty estimates difficult (esp. neutron responses)

· F
 â
 Ľ

- Hadronic matrix elements: from LatticeQCD & Phenomenology
 Relevance of momentum dependence? (up to 5% ?) [Workshop talk: Vincenzo Cirigliano]
- Nuclear structure:
 - Empirical methods: shell-model, DFT, ...
 - \rightarrow Covers most of the nuclid chart (ongoing developments)
 - [Workshop talks: Jacek Dobaczewiski & Markus Kortelainen]
 - \rightarrow Uncertainty estimates difficult (esp. neutron responses)
 - $\circ~$ Ab-initio approaches: few-body and expansion methods
 - \rightarrow Based on chiral Hamiltonians ("Rooted in QCD")
 - \rightarrow Recently tremendous improvements (see below)

2	١.	Ċ	1	7	1	1	1		đ	1	Ċ	1	1	Ċ	:7	2
ř,):	i	ŝ	ł	ŝ	ŝ	ł		ŝ	ŝ	i	ŝ	ŝ	i	Э	2
-		-	-	-	-	-	-		1	-	-	-	-	-	_	~
								6	ς.							

- Hadronic matrix elements: from LatticeQCD & Phenomenology
 Relevance of momentum dependence? (up to 5% ?) [Workshop talk: Vincenzo Cirigliano]
- Nuclear structure:
 - $\circ~$ Empirical methods: shell-model, DFT, \ldots
 - \rightarrow Covers most of the nuclid chart (ongoing developments)
 - [Workshop talks: Jacek Dobaczewiski & Markus Kortelainen]
 - \rightarrow Uncertainty estimates difficult (esp. neutron responses)
 - $\circ~$ Ab-initio approaches: few-body and expansion methods
 - \rightarrow Based on chiral Hamiltonians ("Rooted in QCD")
 - $\circ~\rightarrow$ Recently tremendous improvements (see below)
 - Relevance of deformations [Workshop talks: Andrzej Czarnecki & J. Dobaczewiski]
 - Relevance of 2-nucleon operators? (up to 10% ?) [Workshop talk: V. Cirigliano]

$\begin{pmatrix} P \\ n \end{pmatrix} \\ \vdots \\$	
	8
	999) 9

- Hadronic matrix elements: from LatticeQCD & Phenomenology
 Relevance of momentum dependence? (up to 5% ?) [Workshop talk: Vincenzo Cirigliano]
- Nuclear structure:
 - $\circ~$ Empirical methods: shell-model, DFT, \ldots
 - → Covers most of the nuclid chart (ongoing developments) [Workshop talks: Jacek Dobaczewiski & Markus Kortelainen]
 - Workshop tarks. Jacek Dobaczewiski & Warkus Kortelainenj
 - ightarrow Uncertainty estimates difficult (esp. neutron responses)
 - $\circ~$ Ab-initio approaches: few-body and expansion methods
 - \rightarrow Based on chiral Hamiltonians ("Rooted in QCD")
 - $\circ~\rightarrow$ Recently tremendous improvements (see below)
 - Relevance of deformations [Workshop talks: Andrzej Czarnecki & J. Dobaczewiski]
 - Relevance of 2-nucleon operators? (up to 10% ?) [Workshop talk: V. Cirigliano]
- \circ Coulomb corrections: Solving Dirac equation numerically (using $\rho_{\rm ch})$ [Workshop Talks: Yuichi Uesaka & FN]
 - Recent (re)extraction of charge densities including uncertainties (see below)

• Tremendous improvements over the last 20 years:

• Diverse and complementary set of approaches [Workshop talk: P. Arthuis]

9/14

• Tremendous improvements over the last 20 years:

• Diverse and complementary set of approaches [Workshop talk: P. Arthuis]

9/14

• Tremendous improvements over the last 20 years:

• Diverse and complementary set of approaches [Workshop talk: P. Arthuis]

• Tremendous improvements over the last 20 years:

- Diverse and complementary set of approaches [Workshop talk: P. Arthuis]
- $\circ~$ For nuclei of $\mu \rightarrow e$ conversion: (VS-)IMSRG [Workshop talk: M. Heinz]
- $\circ~$ Uncertainties dominated by chiral Hamiltonians, not by many-body solutions $\rightarrow~$ often stable correlations
- Utilization of correlations requires references (e.g. charge density)

- Renew interest in charge distributions
 [Workshop talk on mean field calc: Karim Bennaceur]
- Historical results are without uncertainties

- Renew interest in charge distributions
 [Workshop talk on mean field calc: Karim Bennaceur]
- $\circ~$ Historical results are without uncertainties
- Extraction from elastic electron-nucleus scattering
- Coulomb Corrections are relevant:
 - $\circ~$ Solve Dirac equation numerically
 - \rightarrow Python package <code>phasr</code> [listed in PyPI]

- Renew interest in charge distributions
 [Workshop talk on mean field calc: Karim Bennaceur]
- Historical results are without uncertainties
- Extraction from elastic electron-nucleus scattering
- Coulomb Corrections are relevant:
 - $\circ~$ Solve Dirac equation numerically
 - \rightarrow Python package phasr [listed in PyPI]
- $\circ~$ Practical challenges:
 - Most data at least 50 years old (hard/impossible to find, limited uncertainties)
 - Computationally intensive (w.r.t. uncertainties)

- Renew interest in charge distributions
 [Workshop talk on mean field calc: Karim Bennaceur]
- Historical results are without uncertainties
- Extraction from elastic electron-nucleus scattering
- Coulomb Corrections are relevant:
 - $\circ~$ Solve Dirac equation numerically
 - \rightarrow Python package phasr [listed in PyPI]
- Practical challenges:
 - Most data at least 50 years old (hard/impossible to find, limited uncertainties)
 - Computationally intensive (w.r.t. uncertainties)
 - Including constraints from muonic atoms
 - Suppress overparametrization (asymptotics)

- Renew interest in charge distributions
 [Workshop talk on mean field calc: Karim Bennaceur]
- Historical results are without uncertainties
- Extraction from elastic electron-nucleus scattering
- Coulomb Corrections are relevant:
 - $\circ~$ Solve Dirac equation numerically
 - \rightarrow Python package phasr [listed in PyPI]
- Practical challenges:
 - Most data at least 50 years old (hard/impossible to find, limited uncertainties)
 - Computationally intensive (w.r.t. uncertainties)
 - Including constraints from muonic atoms
 - Suppress overparametrization (asymptotics)

Carried out for ²⁷Al, ^{40,48}Ca, ^{48,50}Ti

Results available in python notebook [2406.06677]

[FN, Hoferichter, 2024]

Overlap Integrals

• Overlap integrals combine nuclear responses and Coulomb corrections

Overlap Integrals

• Overlap integrals combine nuclear responses and Coulomb corrections

11/14

Overlap Integrals

 $\circ~$ Overlap integrals combine nuclear responses and Coulomb corrections

F. Noël (Uni Bern, ITP)

Recent results

Correlation Analysis

[Workshop talks: M. Heinz & FN; Heinz et al., 2024]

- Establish correlations from IMSRG over an ensemble of 42 Hamiltonians
- Observed tight correlations between overlap integrals and $\langle r^2 \rangle_{ch}$

Recent results

Correlation Analysis

[Workshop talks: M. Heinz & FN; Heinz et al., 2024]

- Establish correlations from IMSRG over an ensemble of 42 Hamiltonians
- Observed tight correlations between overlap integrals and $\langle r^2 \rangle_{ch}$
- $\circ~$ all covariances/uncertainties propagated:
 - from correlation / fit (incl. many-body)
 - from reference radius (from charge density)

Recent results

Correlation Analysis

[Workshop talks: M. Heinz & FN; Heinz et al., 2024]

- Establish correlations from IMSRG over an ensemble of 42 Hamiltonians
- $\circ~$ Observed tight correlations between overlap integrals and $\left< r^2 \right>_{\rm ch}$
- $\circ~$ all covariances/uncertainties propagated:
 - from correlation / fit (incl. many-body)
 - from reference radius (from charge density)

For the first time: Quantitative Overlap integrals with fully quantified uncertainties

 $\circ~$ Carried out for $^{27}\text{Al},~^{48}\text{Ca},~^{48}\text{Ti}$

+1a +2a

Processes related to $\mu \rightarrow e$ conversion

- Decay in orbit (DIO) [see backgrounds discussion]
- (radiative) muon capture [see backgrounds discussion]

Processes related to $\mu \rightarrow e$ conversion

- Decay in orbit (DIO) [see backgrounds discussion]
- (radiative) muon capture [see backgrounds discussion]
- Inelastic $\mu^- \rightarrow e^-$ conversion [Workshop talk: Yoshitaka Kuno] \rightarrow shifting electron momentum, study at the same time
- $\mu^- \rightarrow e^+$ conversion [Workshop talks: Joe Sato & Yoshitaka Kuno] \rightarrow can be competitive/winning against $\mu^- \rightarrow e^-$
- $\mu^- \rightarrow e^- + X/\gamma$ in muonic atom [Workshop talk: Yuichi Uesaka] \rightarrow need to study the whole electron spectrum (with DIO background)

Processes related to $\mu ightarrow e$ conversion

- Decay in orbit (DIO) [see backgrounds discussion]
- (radiative) muon capture [see backgrounds discussion]
- Inelastic $\mu^- \rightarrow e^-$ conversion [Workshop talk: Yoshitaka Kuno] \rightarrow shifting electron momentum, study at the same time
- $\circ \ \mu^- \to e^+ \text{ conversion [Workshop talks: Joe Sato & Yoshitaka Kuno]} \\ \to \text{ can be competitive/winning against } \mu^- \to e^-$
- $\mu^- \rightarrow e^- + X/\gamma$ in muonic atom [Workshop talk: Yuichi Uesaka] \rightarrow need to study the whole electron spectrum (with DIO background)

More generally: nuclear structure calculations are very versatile

- $\circ~$ parity-violating electron scattering (PVES)
- $\circ\,$ neutrinoless double beta decay (0uetaeta)
- neutrino-nucleus scattering
- DM-nucleus scattering
- \rightarrow lots of work happening (past/present/future)

- Goal to discriminate BSM operators
 - What are nuclei with the most complementarity?
 - \rightarrow Make nuclei/isotope suggestions for experiments
 - Can we control uncertainties sufficiently?
 - \rightarrow Much progress in nuclear structure calculations

- Goal to discriminate BSM operators
 - What are nuclei with the most complementarity?
 - \rightarrow Make nuclei/isotope suggestions for experiments
 - Can we control uncertainties sufficiently?
 - \rightarrow Much progress in nuclear structure calculations
- Requirement for comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Overlap integrals are useful quantities
 - High interest on construction of sub-leading overlap integrals

- Goal to discriminate BSM operators
 - What are nuclei with the most complementarity?
 - \rightarrow Make nuclei/isotope suggestions for experiments
 - Can we control uncertainties sufficiently?
 - \rightarrow Much progress in nuclear structure calculations
- Requirement for comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Overlap integrals are useful quantities
 - $\circ~$ High interest on construction of sub-leading overlap integrals
- What role play 2-nucleon currents?
- \circ What about other sub-leading effects (from deformations, etc.)?
- $\circ~$ Study of related processes: inelastic $\mu^- \to e^-,~\mu^- \to e^+,$ etc.

- Goal to discriminate BSM operators
 - What are nuclei with the most complementarity?
 - \rightarrow Make nuclei/isotope suggestions for experiments
 - Can we control uncertainties sufficiently?
 - \rightarrow Much progress in nuclear structure calculations
- Requirement for comprehensive EFT framework with nuclear responses and Coulomb corrections at the same time
 - Overlap integrals are useful quantities
 - $\circ~$ High interest on construction of sub-leading overlap integrals
- What role play 2-nucleon currents?
- \circ What about other sub-leading effects (from deformations, etc.)?
- $\circ~$ Study of related processes: inelastic $\mu^- \to e^-,~\mu^- \to e^+,$ etc.

Hopefully, a lot of these points can be addressed in the near future

Thank you for your attention!

Thanks to Sacha and Karim for organizing the workshop! (as well as to Bira and the ECT* staff)

Backup Slides

Backup: Decomposition of the hadronic side

• SI: coherently enhanced; $\Gamma_{SI} \sim \# N^2$; e.g. [Kitano et al., 2002,...] • SD: not coherently enhanced; only for J > 0; e.g. [Davidson et al., 2018,...]