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Requirements of a muon facility

* A high-power proton driver with an energy of more
than Eyy, = 2my (1+ ) ~ 290 MeV.

m
4-mp
* Practically, more than 500 MeV accelerators
* A pion production target that can be operated
safely and stably under high heat deposition and

high radiation field

* A beamline with high transmission efficiency.

 Particle physics: only a beamline for a specific purpose
COMET@J-PARC Hadron, MU2E@Fermi, g-2@Fermi

* Material science/General science: as much as a variety
of beamlines to answer a variety of users” demands

* “Specialties” that characterizing the facility



Faci the world

__Muonsfac

lities in

MR T

:m,})\g — o GeV Synchrotron

- _,- g . 5 . : ] 7‘

T * By TRIUMF (@) =

gz MusiC (CW) P ——— OV
| (3 7l .

&

-8 ». N Experimental Facility
(Muon & Neutron)

= G-

I S T N
J-PARC MUSE RCNP MusSIC RAL ISIS PSI TRIUMF
3.0 0.39 0.8 0.59 0.52 )
1.0 0.0004 0.16 14 0.05

u* [/s] (surface) 3x108 (U line) 2x10% (50MeV/c) 6x10° 6x108 (LE4) 2x10° ==
1x107 104 7x10% 2x107 (5x10%)
Pulse (25Hz) cw Pulse (50Hz) cw cw




Time Structure - Pulse and CW
= Pulse beam =

pulsed muon beam

o Good S/N under hlgh IG
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Muon Facility in MLF, MUSE
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Muon Production Target

Rotating target

€ To prolong the lifetime of the
target against DPA, operation
started.
#1:2014-2019
#2:2019-

€ Heat deposit: 4 kW

€ Graphite disk: rad. cooling
Bearing, jacket: water cooling

€ Monitors: motor torque,
vacuum level, Q-mass for
outgas. IR-Radiation
thermometer is going to be
operated.

200
E |

Two Scrapers (proton collimator)

€ Scrape the scattered protons
by the target

€ Renewed in 2015.

€ Heat deposit: 20 kW@No1l

€ Water cooling

€ Thermocouple thermometers

Vacuum vessel

€ In service since 2008

€ Hea deposit: 10 kW

€ Water (>90%) and air cooling
€ Thermocouple thermometers




D-line: A decay/surface muon beamline

Double pulse structure
due to accelerator bunch
Each pulse is distributed
to D1 and D2 areas with
a kicker magnet.
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U-line: The hlghest intensity beamline for USM

® All beamlme magnets are axial focusing
| ® The world strongest pulsed muon: 2x108 pu*/s, 1x107 u / S




U-line: Generation of Ultra slow muon (USM)

J-PARC 4 MeV muon
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USM is generated by the laser resonant ionization
method synchronized with the muon beam pulse.
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S-line: A surface muon beamline

Sl e e e iiee ez pisslslp s ez ee it sies i Inthe S1 area, a USR spectrometer was
By using two kicker system, S line provides muon equipped for material science.

beams to all 4 areas simultaneously. In the S2 area, the Mu 1s-2s level is

At present two experimental areas, S1 and S2, measured with ultra-high precision,
were completed. applying two photon absorption.
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The 1St spectrum of 5-T magnet

Pulse uSR: Highly segmented
spectrometer is necessary to
avoid the distortion of time
spectrum due to pileup.

Cf. 5-T magnet needs 3008-ch



3GeV proton Instrument specification of H1
Beam Intensity:
Capture solenoid (HS1) 1x10° p*(surface)/s
2x10° u=(28 MeV/c cloud)/s
2x107 u~(40 MeV/c cloud)/s
4x107 u=(>50 MeV/c cloud)/s

Bending magnet (HB/ Beam spot size:
30-35 mm

W
Gate valve (HGV1)

Adopting a new beamline
concept which is confirmed
by a particle tracking
simulation, the H line is
designed to provide a high-
intensity beam with a wide-
range momentum tunability
to each of several areas.
The muon beamline of MLF-
TS2 inherited this concept.

Transport solenoid
(HS2 and HS3) &

Septum or bending magnet (HB2) .y
. Experimentalfareatil!

onceptual design was proposed
. Doornbos, TRIUMF. Experimental area #3!




The studies in the H1 area R

DeeMe:

muon-to-electron conversion search
MuSEUM:
High-precision measurement of muonium

—> Hlinebldg.

Transmission Muon Microscope
e e p*
Observation of S S
whole living cell ‘Bﬁ@ Ea ving call
owing to high 1
transmittance - —
capability of muon e sico Iﬁ:iffflV@"

Transmission image (bulk)

Reconstructed 3D image

g-2/EDM exp.
Searching for BSM.




MSR(muon spin Rotation, Relaxation, Resonance)
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Observing the muon’s precession frequency
a) Aimost 100 and changes in amplitude gives information
is transported  on the internal magnetic field of the sample.

target to the s Muon is a unique tool proving the local YT
magnetic field inside the sample. o = 100 gaus
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magetlc Field. ! - and background correction.



Scientific Highlight (Material Science)

uSR study on the hybrid perovsklte solar cell

One promising next-generation
solar cell material is a hybrid
organic-inorganic perovskite
(HOIP) compound. They are
attracting attention because of
their extremely high energy
conversion efficiency of more
than 25%.

A LSR study on archetypal
MAPbI,, reveals that the ch
carrier lifetime correlates

the rotation of organic molecules.

* CH;NH;Pbl,
MA(Methyl Ammonium)Pbl,
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molecules seen from the
muon is averaged out.

from
constant.

photoluminescence measurements
and muon spin relaxation rate
(dashed curves). The vertical
dashed lines indicate the structural
transition temperatures.

The muon spin
exhibits relaxing
behavior due to the
local magnetic field
from MA molecules.

Muon spin polarization
is unchanged.

(Unable to follow
changes in magnetic
field)

The result indicates that the moderate suppression of the speed of
free rotational motion of organic molecules is important for the long
charge carrier lifetime.

We demonstrated the uSR study can contribute to the development
of efficient and low-price next-gen. solar cell, optical device, etc.

A. Koda et al., PNAS 119, e2115812119 (DOI:10.1073/pnas.2115812119)
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Muonic X-ray measurements

electron

/

A muon is 200 times heavier
than an electron

The muonic X-ray has higher energy and can
The OF come out of the inside of the sample where
15 the muon stops. This feature can be applied

. . leus (Z)
to non-destructive elemental analysis. / aliactran

(\ l | " |
(%) %
Muonic atom /7

The characteristic X-ray muonic X-ray

energy is 200 times higher. A negative muon captured by an atom
loses its energy down to the ground state

by emitting X-rays.




Scientific Highlight (Element Analysis)

Muonic X-ray non-destructive element analysis
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Oxygen in the Ryugu stones is Iess than
the standard Carbonaceous Chondrite
(Orgueil meteorite).

This implies that the standard meteorite  [j§
had been oxidized by the atmosphere and § '
that the Ryugu stone is more suitable to

e h\.\ the standard specimen.
Hayabusa-Il (CG image) . -

a— =




MLF Ta rget StatlonZ o
o //\ Muon intensity

“J-PARCT 4_‘ e 5 x50

/ -&- ' E 1.E-07 /—\/\4 VJ\VA,Z\'
§ 1.E-08 /\W
=

This project was selected as one of “The Medium- to the Long Term
Academic Research Strategy” by the Science Council of Japan,
although the budget has not been guaranteed yet.
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“Specialties” of MUSE

* High-intensity pulsed beam
—> beam distribution by kicker systems (D & S line)
—> devices synchronizing the pulse
— flashlight etc. for uSR spectroscopy (SE)
— ultra-slow muon generation by pulse-laser
— g-2/EDM exp., transmission muon microscope

* pion generation by 3-GeV proton beam
— relatively high yield of = and thus u~
—> promotion of non-destructive elemental analysis
—> application to heritage science etc.



summary

* The world’s highest-intensity pulsed muon facility,
MUSE, provides high-intensity muon beams to 4
unigue beamlines to answer the demand of various
muon sciences; material science, atomic and
molecular physics, particle physics, industrial
application, elemental analysis, heritage science,

etc.

* Thank you very much for your attention. Grazie



