

Advancement of the PSI muon facility

Angela Papa Paul Scherrer Institute and University of Pisa/INFN Muon4Future 2025, 26th-30th May, Venezia (Italy)

Content and disclaim

- Status of the current particle physics facility with special emphasis on muons •
 - Introduction to the dedicated talks at this workshop •
 - workshop)

P.Schmidt-Wellenburg, A. Soter

muSR facility NOT covered here (please refer to Z. Salman and M. Heiss talks at this

Special thanks to: A. Antognini, L. Caminada, B. Lauss, K. Kirch, A. Knecht, D. Ries, S. Ritt,

PSI particle physics vision

- Exploit and further develop the unique Swiss Infrastructure for Particle Physics at PSI
 - World-leading intensities of pion, muons and ultra-cold neutrons
- Facilitate and perform experiments at the low-energy, precision frontier with unique reach
- Realize HIMB 2025-28, re-arrange and improve experimental areas
 - Push beam intensities and beam quality
- Commission/operate & upgrade various beam lines
- Continue a focused program on improvements for beams, detectors, and theory
- Everything is set for a leading particle physics program at PSI until 2045 and beyond

Where we are

The PSI Facilities

The PSI High Intensity Proton Accelerator Facility (EH)

The PSI HIPA ring cyclotron

- at time of construction a new concept: separated sector ring cyclotron [H.Willax et al.]
- 8 magnets (280t, 1.6-2.1T),4 accelerating resonators (50MHz), 1 Flattop (150MHz), diam.
 15m
- losses at extraction< 200W
- reducing losses by increasing RF voltage was main upgrade path [losses ~ (turn number)³
 W.Joho]
- 590MeV protons at 80%c
- 2.4mA x 590MeV=1.4MW

PSI's muon beams

- Low-energy muon beam lines typically tuned to surface- μ^+ at ~ 28 MeV/c
- Note: surface-µ —> polarised positively charged muons (spin antiparallel to the momentum)
- Contribution from cloud muons at similar momentum about 100x smaller
- Negative muons only available as cloud muons

PSI's muon beams

• PSI delivers the most intense continuous (DC) low momentum (surface) muon beam in the world up to few x 10⁸ mu/s (28 MeV/c, polarised beam (Intensity Frontiers)

MEGII / Mu3e Experimental area

How the beam intensity can be increased...

- - (up to 60% of gain: Graphite Slanted target)
 - channel
- - **Increase surface muon rates (30-60% increase depending of the beamline)**
 - Increase safety margin for "missing" target with the proton beam
- PSI Long shut-down: 2027-8. HiMB from end of 2028

HiMB landscape...

Eagers not only for more muons...

• intensities, proper (DC or pulsed) time structure, w/o polarization, optimal phase space

•
$$\mu \rightarrow e\gamma$$
, $\mu \rightarrow eee$

Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's **highest** beam

The muCool project at PSI

- Aim: low energy high-brightness muon beam •
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor **10¹⁰** with an efficiency of **10⁻⁴**
- Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved
- **Next Step:** Extraction into vacuum

G. Lospalluto's talk

Transverse Compression

data

The intensity frontier at PSI: Pions, muons and UCN

Precision experiments with the lightest unstable particles of their kind

See recent Particle Physics at PSI, https://scipost.org/SciPostPhysProc.5.001

cLFV with the MEGII experiment

- ٠
- •

A.Oya's talk

The MEGII experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of $\sim 6 \times 10^{-14}$. It started data taking in 2021 and is expected to run until 2026 ($\sim O(10)$ better than MEGI) A new Physics Result has recently been released based on the data 2021+2022 setting a new Upper Limit on the Branching ratio of the $\mu^+ -> e^+ \gamma$: 1.5 x 10⁻¹³ (@90% CL.)

Upper Limit (90% CL) on **BR = 1.5 x 10**⁻¹³

cLFV with the Mu3e experiment

Event Signature from stopped muons in the target

•

Future cLFV searches: A community is growing up

- How the $\mu^+ \rightarrow e^+ \gamma$ sensitivity can be improved? Or...which are the current limiting factor of the $\mu^+ \rightarrow e^+ \gamma$ search?
- A community is growing up with the aim of exploiting the new upcoming beam intensities (as HiMB at PSI) and new technologies •
- for future $\mu^+ \rightarrow e^+ \gamma$ searches aiming at least at one further order of magnitude better than its predecessor

Vertex decay reconstruction

T. Iwamoto's talk

ATTOOS 108 cm Ладпет (2 T) 30° beam 50 cm Positron spectrometer Muon stopping active targets Active converter pair spectrometer (4 super-layers) 2 Calorimeter (high efficiency) favorite Sensitivity [a.u.] option as long as 3 Conversion (high Nacc ~ 0 (reduced resolution) favorite beam rate) option at high rate to keep Nacc ~ 0 Nacc >> 1 ~ 0 1 Efficiency Nacc Ses ~ S/JBE dominated vs Ses ~ 1/ RE background Beam Rate [a.u.] $\int (\varepsilon / \Delta E_{e...})$ dominated Photon conversion regime Calorimeter Improved calorimeter

The muEDM experiment at PSI

L. Morvaj's talk

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
muEDM phase I - frozen-spin demonstration											
ong shutdown PSI											
Phase I - EDM data taking											
Phase II - design and construction											
Phase II - commissioning						3					
Phase II - exploitation (EDM data)					2						

Full description: https://arxiv.org/abs/2501.18979

Muonic Atoms and fundamental physics

muX, QUARTET and RefRadii

A very active nuclear physics program is developing

S. Vogiatzi's talk

muX

Courtesy: K. v. Schoeler

·		

Muonium physics

• Mu is the simplest atomic species: μ +e- atom

- Purely leptonic hydrogen species!
- Rich structure and phenomenology
 - Readily formed
 - Spectrum understood
 - Forms molecules!
 - Decays with free muon lifetime
- 1s-2s transition frequency predicted in QED to 0.6 ppb
 - Minimal hadronic contributions!
- Similar story for 1s hyperfine splitting
- Mu-MASS at PSI
 - Improve 1S-2S measurement three orders of magnitude
 - Improves muon mass determination to 1ppb
- MuSEUM at J-PARC
 - Improve hyperfine measurement one order of magnitude 1ppb
- The combination will determine the Rydberg constant to 4ppt!

Summary

- ongoing and foreseen for the incoming future
- most exciting places where to search for new physics with strong complementarity to the energy frontiers
- and new detector developments are the keys for addressing this very challenging physics program

Thanks a lot for your attention !!!

• Astonishing sensitivities in muon precision physics at intensity frontiers are

Rare/forbidden decay searches and symmetry tests remain among the

Both very intense, continuous and pulsed, and high brightness muon beams

Muon beams worldwide summary

Laboratory	Beam Line	DC rate (μ /sec)	Pulsed rate (μ/sec)
PSI (CH) (590 MeV, 1.3 MW)	$\mu E4, \pi E5$ HiMB at EH	$2 \div 4 \times 10^8 \ (\mu^+)$ $\mathcal{O}(10^{10}) \ (\mu^+) \ (>2018)$	
J-PARC (Japan) (3 GeV, 210 kW) (8 GeV, 56 kW)	MUSE D-Line MUSE U-Line COMET		$3 \times 10^{7} (\mu^{+}) \\ 6.4 \times 10^{7} (\mu^{+}) \\ 1 \times 10^{11} (\mu^{-}) (2020)$
FNAL (USA) (8 GeV, 25 kW)	Mu2e		$5 \times 10^{10} (\mu^-) (2020)$
TRIUMF (Canada) (500 MeV, 75 kW)	M13, M15, M20	$1.8 \div 2 \times 10^6 (\mu^+)$	
RAL-ISIS (UK) (800 MeV, 160 kW)	EC/RIKEN-RAL		$7 imes 10^4 (\mu^-) \\ 6 imes 10^5 (\mu^+)$
KEK (Tsukuba, Japan) (500 MeV, 25 kW)	Dai Omega		$4 \times 10^5 (\mu^+) (2020)$
RCNP (Osaka, Japan) (400 MeV, 400 W)	MuSIC	$\frac{10^4(\mu^-) \div 10^5(\mu^+)}{10^7(\mu^-) \div 10^8(\mu^+)(>2018)}$	
JINR (Dubna, Russia) (660 MeV, 1.6 kW)	Phasotron	$10^{5}(\mu^{+})$	
RISP (Korea) (600 MeV, 0.6 MW)	RAON	$2 \times 10^8 (\mu^+) (> 2020)$	
CSNS (China) (1.6 6eV, 4 kW)	HEPEA	$1 \times 10^8 (\mu^+) (> 2020)$	

LEMING at PSI: Muonium gravity

• equivalence with and elementary, second generation (anti)lepton

SFHe

mirror

- Muonium source and mirror
- Mach-Zehnder interferometer _
 - 100nm!
- Muonium decay trigger detectors -
- Sign of g in 1 day at 100kHz -
- ~month to precision comparison

Measurement of gravitational acceleration of muonium, and next generation laser spectroscopy, testing the weak

Courtesy: A. Soter

Muonium production

- Stop (nearly!) a positive muon beam in a target in vacuum; some of the muonium will be ejected into the vacuum space
- J-PARC g-2 plans to utilize laser ablated silica aerogel •
 - This yields of order 1% muonium in vacuum, with thermal momentum distribution
 - Thermal Mu requires cooling for beam formation
- PSI and Fermilab muonium experiments plan to use layers of superfluid helium on target surfaces
 - "Hydrogen" is immiscible in superfluid helium \rightarrow stopped Mu ejected from the surface with a very narrow momentum spread (chemical potential)
 - Naturally cooled and emitted at 6,300 m/s normal to surface
 - A superfluid layer can also be used as a slow Mu mirror

Precision Muonium physics

