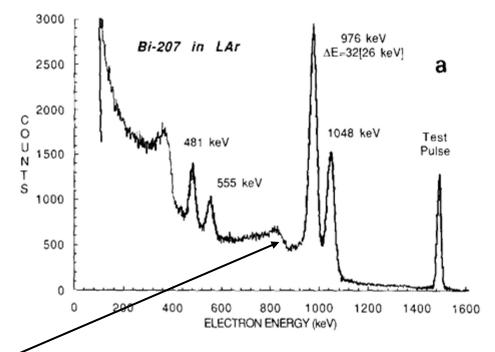

LAr purity monitor (PM)

- PMs are a double gridded TPC where an electron cloud is generated on the cathode by photoelectric effect from a pulsed UV light generated with a Xenon lamp routed to cathode by a fiber bundle.
- Both electrons leaving the cathode/ reaching the anode are measured at each pulse. The ratio of the charge and the drift time are used to measure eattenuation

$Q_{ANODE}/Q_{CATHODE} = exp(-t_{DRIFT}/\tau)$

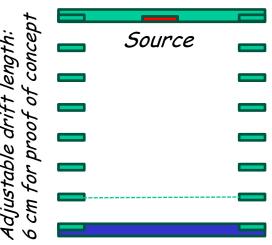
- This device is widely used in almost all LAr-TPCs presently operated and it is also foreseen in future projects like DUNE.
- As an alternative we propose to use a Bi 207 radioactive source with a new better performing set-up



A new LAr purity monitor based on a Bi207 source

 We propose to exploit the Bi207 radioactive source which emits monochromatic EC electron at 976 keV to build a new PM concept.

Decay Mode	: ΕC, β ⁺	Half-Life: (11523 ± 1) d		[1]
Radiation Type		Energy (keV)	Intensity (%)	Ref.
Auger-L		5.2 - 1 5.7	53.8 14	[5]
Auger-K		56.0 - 88.0	2.8 3	[5]
ec-K-1		481.7	1.52 2	[5]
ec-L-1		553.8 - 557.7	0.440 6	[5]
ec-M-1		565.8 - 567.2	0.15 2	[5]
ec-K-2		809.8	0.003 1	[5]
ec-K-3		975.7	7.03 13	[5]
ec-L-3		1047 - 1051	1.84 5	[5]
ec-M-3		1059 - 1061	0.54 7	[5]
ec-K-4		1682	0.02 1	[5]
β+max		806.5	0.012 2	[5]
β +av		383.4		[5]
X-ray L	Σ	9.18 - 15.8	33.2 14	[5]
X-ray Kα	Σ	74.2	58.19 24	[5]
X-ray Kβ	Σ	84.4 - 87.6	16.22 25	[5]
γ		328.11	0.00076 8	[5]
γ	Annih	511.0	0.0024 4	[5]
γ		569.70	97.76 3	[5]
γ		897.8	0.131 6	[5]
γ		1063.7	74.58 49	[5]
γ		1442.2	0.131 2	[5]
γ		1770.2	6.87 3	[5]


Common used source for calibration (intense monochromatic EC peak)

Pulse height spectrum of the Bismuth source in LAr, at E=10.9 kV/cm. The 976 keV electron peak is visible with a 32 keV (fwhm) total energy resolution. E. Aprile et al, NIM 261 3 (1987) 519-526

A new LAr purity monitor based on a Bi207 source

- The deposited e- energy from Bi207 can be measured with the present LAr-TPC cryogenic front-end elecronics with ~50 keV at E_{DRIFT} ~ 500 V/cm as used on most of LAr-TPCs.
- The source is integrated into the cathode of a small LArTPC with shape similar to old purity monitors and ~10 cm drift distance
- The anode is split into two concentric areas:
 - > The inner one receives e-clouds from EC e- peak and from additional Compton e- due to γ also emitted by the source.
 - > The outer one only receives the Compton e- with the same energy spectrum as those on the inner electrode
 - > The outer energy spectrum is used to remove the Compton ebackg. from the inner anode to extrac a "clean" gaussian peak.
- Both anodes readout with cryogenic very low noise pre-amps directly mounted on the back of anodes: no need of decoupling capacitors as anode is at ground.
- No cathode readout (EC e- is known): only an accurate readout calibration of anode is needed, once for all. This feature allows to apply high voltage on the cathode and operate PM at the nominal E-field as in actual LArTPC.

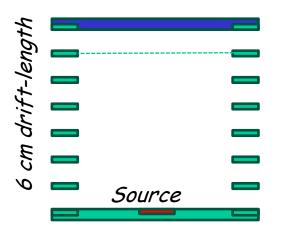
Anode: 2 concentric electrodes Inner electrode diameter: 3cm Outer electrode diameter: 6 cm

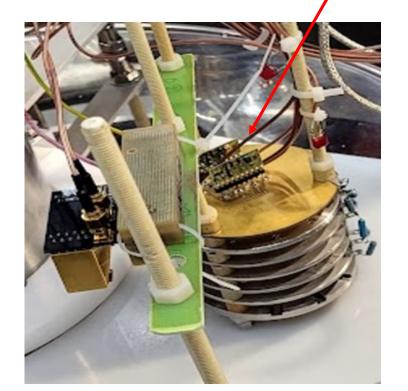
inner

outer

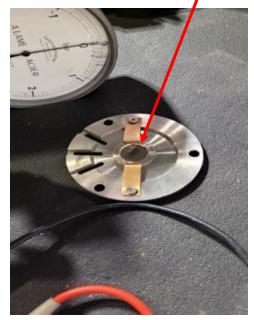
Slide# : 3

Several advantages of a Bi207 PM

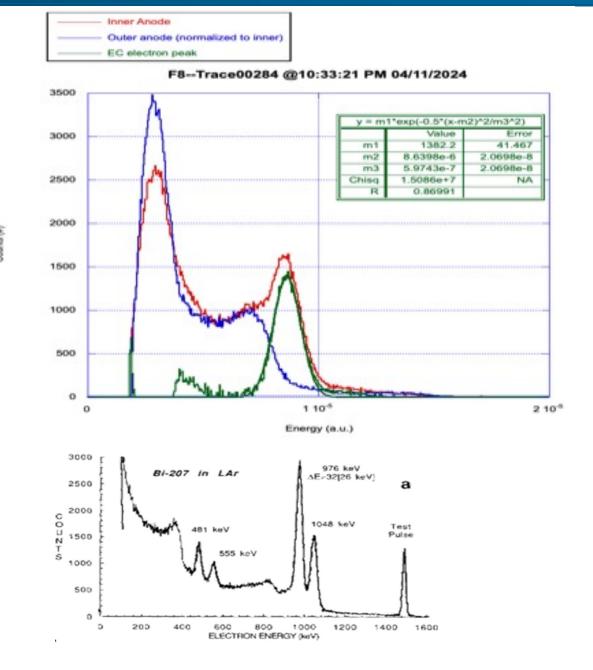

- This proposed PM concept presents several advantages:
 - The Bi207 source can be obtained with activities up to 400 kBq and can be easily shielded during the detector assembly and installation;
 - The energy of EC e- is similar to a typical MIP on a 5 mm anode readout channel: the same front-end electronics of the LArTPC charge readout can be used;
 - The half-lifetime of Bi207 (31 ys) is well in excess of the expected time exposures of any future detectors (also DUNE);
 - The monitor can be operated continuously without interferring with the main LArTPC operation and also during LAr filling;
 - > It can be operated at same E_{DRIFT} as the main LArTPC for a direct e- lifetime meas.
 - Different PM length can be assembled to measure the LAr purity in a large range of values, further reducing the systematics.


LAr purity monitor prototypes based on a Bi207 source

- PM prototype has already been produced (INFN-PD, CERN) and successfully tested at CERN in the Neutrino Platform R&D laboratory in B 182 with a 3 kBq Bi207 source.
- The drift distance in the test stand is only 6 cm and the PM has been operated at 500 to 900 V/cm (25 to 31 μs drift time). With the accuracy on the EC mean energy, electron lifetimes in excess of 1 ms are at reach.


J-fet preamplifiers (2 channels) directly mounted on the back of the anode plate

Schematic of the LAr PM prototype



Cathode plate with Bi207 source

LAr purity monitor prototypes based on a Bi207 source

- It has been demonstrated the the EC peak width of 50 keV is actually achieved, resulting in a determination of the EC peak mean energy of ~0.1% in tens of minutes (the source in the test has an activity of 3 kBq, 150 Hz for the EC electron peak).
- We are preparing in Padova using the test facility of ICARUS at LNL lab/CERN, a new advanced prototype to be tested and inserted asap in the Vertical Drift.

PM: cost and timescale

- We plan to continue our tests finalized to first PM production in 2025.
- The foreseen cost for 10 PMs (not included the source procurement) for 1 cryostat is < 90 K euro to be split in 2 years

Item description	cost/pc(€)	Quantity	Total cost (€)	Year
1 Prototype Purity Monitor with 2 chambers 6 cm and 12 cm	10 k	1	Mostly covered with some ICARUS/DUNE existing components	2024
10 Purity Monitors with 2 chamber 6 cm and 12 cm	8.5 k	10	85 k	2025-2026
1 Radioactive source BI207 *	3 k	1	3.5 k	2025-2026

* to test the PM production

Cost of radioactive sources not included: to be covered by DUNE Collaborators

TOTAL REQUESTS FOR 2025 (sub-judice to the test progresses)

- 40 k€ for device construction (first 4 PMs)
- 15 k€ "consumo" (Lar etc.)
- 15 k€ travel to CERN (extended tests with sources...)

Percentuali

SITUAZIONE 2024:

	SEDE	NOMINATIVO	TIPO	CONTRATTO	QUALIFICA	RICERCATORI	TECNOLOGI	NOTE
•	PD	Baibussinov Bagdat	DIP	Ricercatore	Ricercatore	60		
su		Cicerchia Magda	ASSOC	Incarico di Ricerca scientif	Ricercatore A Temp	80		
		Meng Guang	DIP	Tecnologo	Tecnologo		10	
		Stanco Luca 🥼	DIP	Ricercatore	Dirigente di Ricerca	30		scadenza contratto 2024-04-30
		Varanini Filippo	DIP	Ricercatore	Ricercatore	20		
PD (5 PERSONE - 2 FTE)						1.9 fte 4 pers.	0.1 fte 1 pers.	
	PD (5	PERSONE - 2 FIE)		2.00 fte / 5 pe	ers. (media 0.40)			

Per il 2025 spostamento da ICARUS (stabilmente in presa dati) a DUNE

- Varanini 0.2 -> 0.3
- Meng 0.1 -> 0.2
- Guglielmi 0 -> 0.2
- Totale: 2 -> 2.4 FTE