

Beam Streaking and Reconstruction of the 3D bunch distribution Using the PolariX Transverse Deflection Structure at SwissFEL Athos

Contribution ID: 152 (15th April Session)

Francesco Demurtas¹, E. Chiadroni¹, P. Craievich ², P. Dijkstal ², E. Ericson ², A. Giribono ⁴, R. Ischebeck ², S. Reiche ²

EUROPEAN NETWORK FOR NOVEL ACCELERATORS

FUTONAC4

NPACT supported by EU via I-FAST

IFAST

¹ Sapienza University of Rome, Roma, Italy
 ² Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
 ³ Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
 ⁴ Frascati National Laboratories INFN-LNF, 00044 Frascati (RM), Italy

PolariX Transverse Deflection Structure

 A transverse deflecting structure is an RF cavity where the Lorentz force is directed in the transverse plane, particles in different points along the beam will feel a different field so that a correlation is imprinted between the transverse coordinate at the screen and particle's longitudinal position

$$\sigma_{streaked} = \sqrt{\sigma_{off}^2 + \left(K_{rfd}\sigma_t\right)^2}$$

 $K_{rfd}:$ Calibration Factor $\sigma_t:$ Bunch Length $\sigma_{off}:$ Unstreaked Beam Size

The **PolariX** is an X-band Transverse Deflecting Structure with the feature of changing the beam streaking direction

FIG 1: PolariX TDS Working Principle

3D beam distribution Reconstruction

- The 3D beam distribution can be reconstructed by streaking the beam at different angles, covering a polarization range of 180 degrees
- Each streaked beam is divided into longitudinal slices, depending on the resolution, obtaining a set of 1D distributions for each streaking angle

The sets of 1D projections are combined using a SART tomographic algorithm, retrieving the 2D distribution for each slice

 By stacking the slices together the 3D distribution is obtained

FIG 3: 3D Reconstruction

ATHOS diagnostics beamline at SwissFEL

> ATHOS is the soft X-rays beamline at SwissFEL at 3 GeV, two PolariX TDS are installed to measure the longitudinal properties of the beam

FIG 4: Layout of the Athos diagnostics beamline

System of three Phase Shifters to change the polarization of the streaking fields

DSCR120

Beam Parameters	
Charge [pC]	200
Energy [GeV]	3.4
RMS Bunch Length [fs]	10.2
$\beta_{x,y}$ at the Screen $[m]$	20

18 deg

TDS Parameters		
TDS Length [m]	1.2	
Voltage [MV]	70	
Klystron Power [MW]	28	
TDS-Screen Distance [m]	11	
TDS Calibration [$\mu m/fs$]	16	

54 deg

Reconstructed with the tomography

144 deg

Measurement results

- To perform the reconstruction the beam has to be streaked by covering a polarization range of 180 degrees
- The Streaking Angle is obtained by measuring the centroid shift when changing the RF phase

Polarization	Measured Angle
[deg]	[deg]
0	3.0 ± 0.2
18	19.7 ± 0.2
36	37.8 ± 0.4
54	57.0 ± 0.3
72	75.3 ± 0.7
90	94.4 ± 0.6
108	111.4 ± 0.7
126	129.8 ± 0.7
144	138.6 ± 0.4
162	165.3 ± 0.3

This methodology will be complemented with a quadrupole scan, by varying the phase advance to the reconstruction point to the screen, corresponding to a phase space rotation in the transverse plane, allowing to perform a tomography to reconstruct the 5D phase space (x,x',y,y',t)

36 deg

Reference

[1] Craievich, Paolo, et al. "Novel X-band transverse deflection structure with variable polarization." *Physical review accelerators and beams* 23.11 (2020): 112001.

Acknowledgement: "This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730 "I.FAST"."

- [2] Marx, Daniel, et al. "Reconstruction of the 3D charge distribution of an electron bunch using a novel variable-polarization transverse deflecting structure (TDS)." Journal of Physics: Conference Series. Vol. 874. No. 1. IOP Publishing, 2017.
- [3] Marx, Daniel, et al. "Simulations of 3D charge density measurements for commissioning of the PolariX-TDS." Journal of Physics: Conference Series. Vol. 1067. IOP Publishing, 2018. [4] Jaster-Merz, S., et al. "5D tomographic phase-space reconstruction of particle bunches." Physical Review Accelerators and Beams 27.7 (2024): 072801.