Active Energy Compression of Laser-Plasma Accelerated Beams

Paul Winkler DESY, Germany

paul.winkler@desy.de

plasma.desy.de kaldera.desy.de

LPA

DESY. Active Energy Compression of LPA beams P. Winkler **LPAW** 2025, 13–19 Apr 2025, Ischia Island (Italy)

Demonstration Experiment at とと

20

conventional accelerator beamline

DESY. Active Energy Compression of LPA beams P. Winkler LPAW 2025, 13–19 Apr 2025, Ischia Island (Italy)

Demonstration Experiment at ととメ

20

conventional accelerator beamline

Downramp assisted ionisation injection [M. Kirchen, S. Jalas et al., Phys. Rev. Lett. 126, 174801 (2021)]

DESY. Active Energy Compression of LPA beams P. Winkler LPAW 2025, 13–19 Apr 2025, Ischia Island (Italy)

Demonstration Experiment at とと

20

conventional accelerator beamline

%-level energy spread and jitter consecutive shot 1000 2000 2500 1500 charge outside acceptance is lost dQ/dE (pC/MeV) 5

Downramp assisted ionisation injection [M. Kirchen, S. Jalas et al., Phys. Rev. Lett. 126, 174801 (2021)]

LPA beams are intrinsically short

but show percent-level energy spread & jitter

A dipole chicane reduces the longitudinal slice energy spread

by imprinting an energy dependent delay.

The spectrum is compressed inside an (active) RF cavity

removing the chirp imprinted earlier.

Energy spread & jitter reduced simultaneously for the cost of beam current.

20m of additional beamline installed in 2024

Decompression chicane

360° RF phase scan

energy spectrum is compressed for a larger range of RF phases

$$V_{RF} = \frac{E_{ref}/e}{k_{RF} R_{56}}$$

S-band RF has a 10 cm wavelength (3 GHz)

 $R_{56} = 10 \text{ cm}$ $V_{RF} = 45 \text{ MV}$

360° RF phase scan

energy spectrum is compressed for a larger range of RF phases

$$V_{RF} = \frac{E_{ref}/e}{k_{RF} R_{56}}$$

S-band RF has a 10 cm wavelength (3 GHz)

> $R_{56} = 10 \text{ cm}$ $V_{RF} = 45 \text{ MV}$

а	32	25		
	30	00	_	
(MeV)	27	75		٠
lergy	25	50	_	
Ш	22	25		
	20	00	_	
b	(%)	3		
	spreac	2	_	
	ergy (1	_	
	Ĕ	0	_	

Active energy compression of plasma accelerated beams to the permille

0.048% energy jitter & 0.097% energy spread, factor ~25 energy compression

Energy spread is compressed to resolution limit of the spectrometer uncorrelated slice energy spread should be between E-4 and E-5

DESY. Active Energy Compression of LPA beams P. Winkler **LPAW** 2025, 13–19 Apr 2025, Ischia Island (Italy)

[S. Antipov, A. Martinez de la Ossa et al., Phys. Rev. Accel. Beams 27, 100704 (2024)]

Increasing the R56 from 10 cm to 17 cm reduces required RF power by a factor 3

while performance would still be good enough for injection

$$V_{RF} = \frac{E_{ref}/e}{k_{RF} R_{56}}$$

$$P_{RF} \propto V_{RF}^{2}$$

$$V_{RF}^{2} \propto V_{RF}^{2} \propto V_{RF}^{2}$$

$$V_{RF}^{2} \propto V_{RF}^{2} \propto V_{RF}^$$

while performance would still be good enough for injection

Conclusion

- Performance so far associated with modern RF accelerators.
- well suited for synchrotron injectors.
- The RF power required scales with the input beams energy stability
- scaling to higher energies (or higher current): X-band or plasma dechirper
 - [A. Ferran Pousa et al., PRL 129, 094801 (2022)]
 - [A. Martinez de la Ossa et al., PIP4 CDR (2023)]
 - [S. Antipov et al., PRSTAB 24, 111301 (2021)]

KALDERA - DESYs new flagship laser

First phase with 100 Hz, 0.5 J is online allowing for first electron experiments

DESY. Active Energy Compression of LPA beams P. Winkler **LPAW** 2025, 13–19 Apr 2025, Ischia Island (Italy)

	15:00 - 15:15
	Paul Winkler
	15:15 - 15:30
gr	Status of the KALDERA drive-laser development for a ne Dr Guido Palmer
	Las
F	High average power laser plasma acceleration at DESY Dr Manuel Kirchen
oks 6:30	Development of the L2-DUHA dual output front end at EL Alex Johannes Whitehead
riv	High repetition rate TiSa lasers for laser plasma accelera Vincent Leroux

Next: Demonstrate full technology chain at lower energy Injection of LPA beams into the DESY II booster ring

- Conceptual design report published
- Energy compression demonstrated
- Demonstrate full technology chain (incl. synchronisation, matching ...) at lower energy (~400 MeV)
- planned injection into DESY II in 2026

Acknowledgements The DESY Plasma Group (MPL)

9

See our webpage at plasma.desy.de for a full list of teams and activities.

Plasma R&D at DESY

Our portfolio at plasma.desy.de

Scientific Engineering

LUX Laser-Plasma Accelerator

> KALDERA High Rep-Rate LPA

EPACE European Compact accelerators, Applications, Entrepreneurship

Research Topics

- kHz laser-wakefield acceleration
- Snapshot tomography of laser-plasma acceleration
- Machine-Learning-Enhanced Laser Plasma Accelerators
- Tailored plasma targets for Laser Wakefield Acceleration
- Production of high-density spin-polarized hydrogen-atom target
- Spin polarisation in plasma accelerators
- VHEE radiotherapy with beams from a wakefield accelerator
- Compact muon and electron source for radiological system for medical applications
- Advancing radiotherapy with laser-plasma accelerators
- ICS soft x-ray source for semiconductor wafer metrology
- Inverse Compton Scattering (ICS) x-ray source from a high-repetition-rate LPA
- Controlling plasmas on hydrodynamic time scales to improve plasma accelerators
- Theoretical study of superluminal laser-plasma acceleration
- Plasma mirrors towards high-quality compact electron accelerators
- Better beam quality in plasma accelerators through high-performance computing

www.epace.eu

