<u>Cea</u>

High electron charge accelerated in the SM-LWFA regime with the LMJ-PETAL laser

<u>X. Davoine</u>^{1,2}, B. Mahieu¹, W. Cayzac¹, L. Ribotte¹, R. Babjak^{3,4}, D. Batani⁵, N. Blanchot⁶,
 G. Boutoux^{1,6}, T. Caillaud⁶, S. Debesset⁶, R. Diaz⁶, A. Duval¹, R. du Jeu⁶, B. Etchessahar⁶,
 E. d'Humières⁵, M. Ferri⁶, J. C. Kieffer⁷, I. Lantuéjoul¹, N. Lemos⁸, L. Le-Déroff⁶,
 R. Parreault⁶, C. Rousseaux¹, K. Ta Phuoc⁹, B. Vauzour¹, M. Vranic³, F. Albert⁸

¹CEA, DAM, DIF, F-91297 Arpajon, France
 ²Université Paris-Saclay, CEA, LMCE, F-91680 Bruyères-le-Châtel, France
 ³Golp/IPFN, IST, Univ. de Lisboa, 1049-001 Lisbon, Portugal
 ⁴IPP, Czech Academy of Sciences, 182 00 Praha 8, Czechia
 ⁵CELIA, Univ. de Bordeaux–CNRS–CEA, UMR 5107, 33405 Talence, France
 ⁶CEA CESTA, F-33116 Le Barp Cedex, France
 ⁷INRS-EMT, Univ. du Québec, Varennes J3X 1S2, Québec, Canada
 ⁸NIF and Photon Sciences, LLNL, Livermore, California 94550, USA
 ⁹LOA, ENSTA Paris, CNRS, Ecole Polytechnique, IPP, 91762 Palaiseau, France

LMJ-PETAL facility

LMJ-PETAL (CEA, near Bordeaux, France) PETAL (1 PW): ~ 400 J, ~ 700 fs, ~ 30 μ m ~ 5 × 10¹⁸ W/cm²

~ 5 shots / campaign

We acknowledge the "Grand Equipement de Calcul Intensif" GENCI-TGCC for granting us access to the supercomputer IRENE under the project No. A0110512993

F. Albert: Work supported by the DOE Early Career research program, Fusion Energy Sciences, under SCW1575-1

Electron wakefield acceleration on PETAL: Fundamental studies of SM-LWFA with PW laser

Bubble / Blowout regime

 Many results obtained in different laboratories

 $\tau \sim 30 \text{ fs}$

Self-Modulated LWFA regime

e- density

n_e

0

- Limited number of studies of the SM-LWFA regime on PW laser facilities
- Lower electron energies + broadband spectrum

• but **PW** + **ps**
$$\Rightarrow$$
 $E_{laser} \sim kJ \Rightarrow$ high charge ($\sim \mu C$)

F. Albert *et al.*, Phys. Rev. Lett. 111, 235004 (2013)
F. Albert *et al.*, Phys. Rev. Lett. 118, 134801 (2017)
N. Lemos *et al.*, PPCF 60, 054008 (2018)
G. Williams *et al.*, Rev. Sci. Instr. (2018)
J.L. Shaw *et al.*, Sci. Rep 11 7498 (2021)
P. M. King *et al.*, HEDP (2022)
J. Ferri *et al.*, PRAB 19, 101301 (2016)

3

Electron wakefield acceleration on PETAL: Toward brilliant X- and \gamma-ray Sources

Experimental setup

Laser and plasma target

- Typical PETAL beam
 - *τ* ~ 700 fs
 - ~ $5 \times 10^{18} \text{ W/cm}^2$
 - Focal spot size: ~ 30 μm
 - Full energy: ~ 350 J
 - Energy in the central spot: ~ 40 J (issue with the focal spot quality during the campaign, now solved),

- 2 gas jets
 - 4 mm and 10 mm nozzles
 - With He only, $n_e \leq 10^{19} \, {\rm cm}^{-3}$

Cez

Experimental results

Laser Energy	Laser Duration	Laser Intensity	Nozzle	Density
347 J	0.64 ps	$4.4 \times 10^{18} \text{ W/cm}^2$	4 mm	10^{19} cm^{-3}
313 J	0.92 ps	$4.3 \times 10^{18} \text{ W/cm}^2$	4 mm	$10^{19} \mathrm{cm}^{-3}$
352 J	4 ps	$8 \times 10^{17} \mathrm{W/cm^2}$	10 mm	$5 \times 10^{18} \text{ cm}^{-3}$
351 J	0.82 ps	$4.6 \times 10^{18} \text{ W/cm}^2$	10 mm	$5 \times 10^{18} \text{ cm}^{-3}$
278 J	0.62 ps	$5.2 \times 10^{18} \text{ W/cm}^2$	10 mm	$2.5 \times 10^{18} \text{ cm}^{-3}$

- Divergence: ~100 mrad
- Charge
 - Shot 3: ~ 1 µC > 1 MeV

Information on the radiation environment: to be analyzed

Preliminary 2D simulation (CALDER): laser focusing and self-modulation

 $I = 7.5 \times 10^{18} \, \mathrm{W/cm^2}$

 $x [c\omega_0^{-1}]$

0.2 0.3 0.4

1.0 0.8 E_{las}/E_0 9.0 $n_e \left[10^{19} \, {
m cm^{-3}}
ight]$ 0.2 0.0-15 20 10 $x \mid mm$

Laser energy – 10 mm nozzle 10 mm nozzle 2 $n_{e,max}$ $I = 7.5 \times 10^{18} \, \mathrm{W/cm^2}$ $I = 20 \times 10^{18} \, \mathrm{W/cm^2}$ $I = 10 \times 10^{18} \, \mathrm{W/cm^2}$ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 $x \ [c\omega_0^{-1}]$ $x [c\omega_0^{-1}]$ $x [c\omega_0^{-1}]$ 10 mm nozzle 4 5 6 $n_{e,max}/4$

Lower plasma density:

- Lower self-focusing
- Slower laser evolution
- But acceleration on a longer distance \Rightarrow higher electron energy

Preliminary 2D simulation (CALDER): Electron beam spectrum

- Higher electron energies obtained with the 10 mm nozzle (up to 300 MeV)
- Lower beam charges obtained with the lower plasma densities

Quasi-3D simulation (OSIRIS): competition between SM-LWFA and DLA $_{10^{-6}} \frac{dQ/dE}{10^{-4}} \frac{[nC/MeV]}{10^{-2}} \frac{10^{0}}{10^{-4}}$

 10^{-2}

-500

 $n_e[n_c]$

-1000

x/c-t [fs]

 10^{-3}

 10^{-4}

mm

-1500

 $\begin{array}{ccc} & n_e[n_c] \\ 0.005 & 0.010 & 0.015 & 0.020 \end{array}$

200

100

E [MeV]

0.000

[mm]

さ2

Cez

 At low density: wakefield acceleration is dominant. a₀ and n_e are too low for efficient DLA.

R. Babjak et al., New J. Phys. 26 (2024) 093002

 At higher density: DLA is dominant. DLA is boosted due to the pre-acceleration in the wakefield.

 $E_x[m_e c\omega_0/e]$

-1000

x/c-t [fs]

0.05

-500

0.10

 $-0.10 -0.05^{-1}$

-1500

Conclusions

- First experiment of wakefield acceleration in the self-modulated regime on PETAL
 - First use of a gas jet on LMJ-PETAL
 - Production of electrons > 150 MeV (Maxwellian-like spectrum)
 - Charge > 1 MeV up to μ C level
 - Charge > 10 MeV up to several 10's of nC
 - Even at low n_e and a_0 , DLA can occur due to pre-acceleration in the wakefield
- Possibility to enhance these sources in the coming years
 - Project to upgrade the PETAL energy to 800 J and 1 kJ in the next years
 - Improvement of the laser beam (contrast, focal spot) and optimization of the setup
 - Use of energetic electrons produced in the gas jet to trigger Bremsstrahlung and (γ,n) reactions in a convertor to study photonuclear reactions and produce alternative neutron sources
- These results pave the way to the applications with the energetic particle sources produced on PETAL.