A generalized parallelization algorithm

for Particle-In-Cell Simulations

.

TECNICO
LISBOA

R. A. Fonsecal?

4GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal

2DCTI, ISCTE-Instituto Universitario de Lisboa, Portugal

TECNICO
LISBOA

Parallelizing the Particle-In-Cell algorithm

PICalgorithm

+ PIC cod: d candidates for

Work done on each particle is essentially independent

Integration of equations of ol " . ol
motion, moving partcies

Most compute time is devoted to the particle advance

Each particle advance is generally independent from
eachother

Main difficulty relates to memory access

- Fieldinterpolation can be very costly
Cavanomontpegd - Random access to global memory inefficient
gl ER) + Alsoaffects current deposition
LR + Current deposition may lead to memory collisions

B + 2particles handled in parallel may deposit to the

5 ="VXE same cell

Abstract

TECNICO
LISBOA

Particle-in-cell (PIC) codes have been a cornerstone of plasma-based accelerator development
These work at the most fundamental, microscopic level, making few physics approximations, and
are ideally su this problem. However, this makes them some of the most computationally
expensive models in plasma physics. The current ecosystem of scientific computing systems
relies on many different hardware approaches and vendors, each with specific programming

res, and processor types, and efficiently deploying PIC codes on these
architecturesis paramount.

In this paper, we present a generalized parallelization algorithm for PIC simulations that is shown
towork across all of the main architectures available today, including both CPUs (x86 / Arm) and
GPUs (NVIDIA, AMD, Intel). The algorithm s t ial domain decomposition,
with a high-performance particle manager to move particles between domains. Each domain is
then assigned to a different thread (CPU) or thread block (GPU), achieving good parallel load
balancing even for realistic simulation scenarios. The implementation is done using different
programming models for different architectures, namely OpenMP (CPU), CUDA, ROCm (GPU).
and SYCL (CPU/GPU/FPGA). While the implementations are effectively different e bases,
given that the overall algorithm is the same, there are great similarities between all the
implementations, making pori between them relatively straightforward. We present a
performance comparison between different architectures/programming models for a test 2
problem, demonstrating very high performance for the architectures explored

TECNICO
LISBOA

Modern parallel processors: CPU vs GPU

DDR5/HBM
main memory HBM2e
device memory

core#55

* Up to ~ 108 SM (streaming multiprocessors) per socket

« Many-core architectures with up to - 64 cores per socket i o 0 043 hrsae ey g

« Very good scalar performance
« SIMD vector units upto 512 bits wide

« Very good thread engine.
« Threads are executed inwarps of 32 threads

« Multi-layer memory hierarchy, with large cache sizes per core
« DDRS5/HBM memory upto ~ 512 GB/ 64 GB
« Good performance on non-sequential access

« Explicitly controlled shared memory inside SM
« HBM2e memory up to 80 GB
« High-bandwidth for sequential access

TECNICO
LISBOA

Generalized parallelization algorithm

* Partition the simulation into small tiles
- Particles and grids are organized by small spatial regions on
the order of ~207 cells
Fields are copied from main memory to faster/local memory
Current deposit operates on fast / local memory

ineachtileisi /local

Alltiles may be processed in parallel

After advancing the particles these may need to be assigned
todifferent tiles

fter advancing values must

neighboring tiles
* Additional parallelism is used inside each
- Tile particles / cells may also be processed in parallel

se atomic operations / serialization to avoid memory
collisions during current deposit

+ Maintaining the particl ized by tile
the biggest challenge

- Mustalso be efficiently performed in parallel

Particle tile sort

* Main challenges
+ Minimize data motion .
. . Particle buffer
+ Keep particle buffer contiguous
Minimizes memory requireme tile #0

+ Avoids growing buffers

tile #1

« Temporary buffers in main/device memory .
tile #2

+ Indices of particles moving to another tile

« Particles being moved to another position in the particle buffer

+ Process particles in 4 steps tile #0

1.Count particles crossing boundaries

2.Get new tile offsets in particle buffer tile #1

3.Copy particles moving away from tile to temp. memory

4.Copy particles from temp. memory into tiles tile #2

+ Eachstepmay be performed in parallel

« Actionin each tile is (mostly) independent

Particle tile sort

TECNICO
LISBOA

Main buffer
1. Count particles crossing boundaries: bnd_check

- Loop over all particles and count particles staying / moving to other A 3
tiles .

- Storeindexes of particles moving from tile
7
- Get new number of particles in each tile

2. Getnewoffsets: update_offset Temp. buffer

- Prefix scan of number of particles per tile 3

- Add room for new particles if needed
from tile to (

- If particle moving to another node copy to tmp. memory and fill hole

3. Copy

- pace in temp.

Main buffer

- If particle needs shifting (e.g. change of offset) also copy to temp,
memory 3

4. Copy particles from tmp. memory: copy_in

- Particles are stored at the space left at the end of local tile data

EMField Advance

Main challenge

- Nonlinear memory
rotational operators)

Each thread (cpu) / block (gpu) handles 1 tile

- [gpu]use 1 thread per cell

- [cpu) use auto vectorization

Copy tile E and B to fast memory

- Use block shared [gpu] or local [cpu] memory

- [gpu] Fast access by all threads inside the block

Advance fields (Yee scheme)

- Dohalf Badvance

- DofullEadvance
Use J directly from global memory

- Dohalf Badvance

{epulauto-vec:
il 1 threadicel

Copy E and B back to main memory 1 thread [cpu] /1 block [gpu]

-~ [gpu] Use coalescent memory access

TECNICO
Momentum advance TisBoA

Main challenge
global memory
- Random access to global memory

Each thread (cpu) / block (gpu) handles 1 tile
- [gpu]use 1 thread per particle

- [cpu] use explicit vectorization

Copy tile E and B to fast memory
- Useblock shared [gpu] or local [cpu] memory

- Igpu] Fast access by all threads inside the block,
similar toa memory cache

For each particle
fepul exclicitvee.

- Read position and momenturn from global memory gl threadipartice

Interpolate EM fields

Advance momentum (Boris / Euler) 1 theead [cpu]/ 1block [gpul

Store new momentum in global memory

TECNICO
LISBOA

Move / deposit

Main challenge

- Random access to device memory is costly global memory

- [gpu] atomic operations in device memory are costly
Each thread (cpu) / block(gpu) handles 1 tile tilek |
- [gpuluse 1 thread per particle [EMF] |[Particles

- [cpu] use explicit vectorization

Createtile current grid in fast memory 0
- Zerothisgrid |

[

[gpu] atomicAdd()
- Split trajectory into segments fitting inside a single cell [epul serialize

For each particle
- Read position, momentum

- Move particle (leap frog)

Deposit current for each segment avoiding memory conflicts
{epul explicitvec.

o ' Igpu] 1 thread/particle

(cpul Seralize deposit

d local current grid to global current grid 1thread [cpul / 1 block [gpu]

- Other species will also add to this grid

TECNICO
LISBOA

Implementation

« Ideally for

- The overall algorithmis very similar on all architectures

OpenMP
<3

ich limit NVIDIA
CUDA

- Asingle code base would simplify development

+ However, penalty

- “Onesize fits all” programming models enforce hardware abstraction
models that not always fit our algorithm

- Achieving best p q
the benefits of these programming models

is naturally “native”
- Explicitly manage hardware details

- OpenMP/SIMD intrinsics for CPUs

- CUDA/RoCM for NVIDIA/ AMD GPUs

- SYCL for Intel GPUs (also works with Intel CPUs)

+ Using

- Porting across platforms is straightforward

- Many code blocks are identical / very similar

Qe
OpenMP

CPU parallelism

Main parallelism on CPU" is done through OpenMP
- Launch 1 thread per tile
- Copy EM fields and current to local (stack) memory

- Due tosmalltile size they essentially fit on L1 cache, but thisis
not enforced in any way

Additional parallelism through the use of vector (SIMD) explicit code
- Main issue are memory collisions in current deposit
- Atthe final step current deposit s serialized

Implemented with hardware agnostic layer
- Particle advance implemented using generic vector instructions

- Implement generic vector instructions using specific hardware
intrinsics

Allmajor current SIMD units are supported
- x86 AVX2and AVX-512

- ArmNEON and SVE Vfloat move(vfloat x0, vfloat vel, float dt) {
a

eturn vec_add(x, vec_mul(vel, dt));

TECNICO
LISBOA

GPU Parallelism

GPU accelerators have a separate memory space «D
- Avoid CPU / GPU communication: run everything in the GPU
- Only communication with the CPU is when doing /O

NVIDIA.
CUDA

Assign 1 thread-block per tile
-~ Copy EM fields and current to shared block memory

- Use shared memory as cache

Assign multiple (~ 1k) threads per block
- Each threads handles 1 particle

- Avoid memory collisions in current deposit through atomic operations in
shared memory

major current GPU units are supported
- NVIDIA: CUDA/ROCm/SYCL

- AMD:ROCm

- Intel: SYCL

GreL

Same algorithm, multiple toolkits

auto alttiles - les.y +

it
o It itk ites;) ¢
erictes Stristedsy:
at

Kernel smove_deposit <<< grid, block > (
sparticles,
> offset, 3 > ext_nx,

ext_n,

Launch par:

cuda/rocm

v v

int 1 = threadlge.x; 1 < np; ie= blockdia.x) { for(int 4 = 0; 1 < np_vec; f+= vecuidth) {
3 pu = ulil viloats pu ='vec_load_s3((float +) & uli
EHHH vFloat2 const x0 = vec_load_s2((float +) & x[1

i Vint2 const ix0 = vec_loads2((int +) & ixlil)

float rg = rgannal pu); Vfloat const rg = rganmal pu);

Vloat2 const delta = (
vec_nul(vec_mul(rg, pu.x), dtdxx),

ot vecmut(rg, pury) dtdxty)

Parallel Computation

delt add(x0.x , delta.x),
Eyihterar vecTadd(x0.y | delta.y)

Float x1 = make_float2(Viloat2 x1 = {

cuda/rocm ‘openmp (simd)

Simulation setup
- Collsion of an electron and a positron plasma cloud
+ 2D simulation nthe perpendicular plane

> B ° { =

NVIDIA
A10080GB

sveL(Gpu)
OpenMp/AVX2

Intel

e Xeon Gold

sveL(cpu) 24c@2.40GHz

2
OpenMp /NEON
ple

Api
Openp M4Pro14c@259 GHz

Opentp /svEs12 Fujitsu
A4FX d8c @18
GHz

Opentp

5 75

Performance G Part /5]

W TECNICO
LISBOA

Particle advance takes ~ 90% of loop time

Copyout
b ———
a05%

Timings from NVIDIA P100 tests

Field Solver
22%

Initialization
-
01%

Particle Tile Sort
92%

Simulation
Move/Deposit _
5085 __ Velocity Advance
377%

TECNICO
LISBOA

Using multiple nodes - MPI

Weak scaling @ Deucalion

+ Launch 1 MPI process per processing element
(CPU/GPU)

2procicou

+ The particle manager needs to be made MPl aware

- Exchange messages with all (8) neighbors

Perormance (GParts]

+ Number of particles leaving the node

+ Particle data

o

+ Interleave with single node algorithm ¥ cores

+ After check_bnd exchang of
particl el
+ Collision of an electron and a positron plasma cloud
+ 2D simulation n the perpendicular plane
+ Upto 16k 8k cells, 17.2.G particles

New offsets calculated in update_offset
account for incoming particles

copy_out also copies particles into send
message buffers

While particle data messages are being
exchanged proceed with copy_in

Add particles received from other nodes to
main buffers

TECNICO
Overview TisaoR

zpic@edu

commonalities
* High number of processing elements, SIMD parallelism

+ Layered memory hierarchy, with different sizes / speed

+ Thesame Igorithm may
+ The generalized PIC algorithm presented is shown to have top level
performance on either platform
+ Implementation in native programming models is required, but
porting between platforms is straightforward

- Canbescaled for use in large-scale HPC systems
- Ongoing / Future work

- Finalize GPUMPI code

- Python wrappers for interactive use

+ Implement using Kokkos GitHub)
- Full code available on github

+ https://github.com/ricardo-fonseca/zpic-paralle!

Ricardo Fonseca - LPAW 2025

