
An Analysis of Electromagnetic Wave Propagation in a 

Conducting Cylinder with a Small Aperture

Chong Shik Park, Korea University, Sejong, South Korea 

Electromagnetic Fields

Physical Model and Assumptions

Abstract
This study investigates the propagation and reflection of electromagnetic waves in a 

conducting cylindrical cavity with a small aperture, analyzing the effects of boundary 

conditions on wave transmission and diffraction. Using a Green’s function approach, we 

derive exact solutions for the electromagnetic potentials in the Lorentz gauge, incorporating 

the influence of conducting boundaries and image charges. The field distribution inside the 

cavity is expressed in terms of eigenmode expansions involving Bessel functions, satisfying 

Maxwell’s equations and the cavity’s boundary conditions. The presence of a small hole 

introduces diffraction effects, which are analyzed using Bethe’s small-aperture theory and 

mode-matching techniques to quantify the transmitted field. For large apertures, the wave 

leakage is modeled through cylindrical waveguide modes, while for small apertures, the 

diffraction pattern follows a dipole-like radiation structure. Additionally, we examine the 

wakefields induced by a charged particle beam inside the cavity, illustrating their interaction 

with reflected and transmitted waves. The study provides a rigorous framework for 

understanding space-charge fields in accelerator structures and wave leakage in confined 

conducting environments, with applications in beam physics and electromagnetic field 

modeling.

Electromagnetic Fields

with a Small-Hole Approximation

Green’s Function Formulation

Beam Densities and Boundary Conditions

Space-Charge Potentials in Closed Cavity

• Consider a perfectly conducting cylindrical cavity of radius 𝑎 and length 𝐿.

• One end cavity (𝑧 = 0) is a flat conducting cathode, while the other end (𝑧 = 𝐿) has a 

conducting wall with a circular hole of radius 𝑏 (≪ 𝑎).

• A relativistic, axisymmetric electron beam with charge 𝑄, uniform density, and radius 

𝑟𝑏 < 𝑏 propagates longitudinally within the cavity.

• Ansatz:

• The beam carries only longitudinal current.

• The hole radius 𝑏 is much smaller than the cavity radius 𝑎, enable the use of small-

hole perturbation theory

• In the absence of the hole, the Green’s function for the cavity can be expanded in 

eigenmodes
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where 𝜓𝑚𝑛(𝑟)  are Bessel functions satisfying the radial boundary conditions, and 
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• We employ the Lorenz gauge condition, where the scalar and vector potentials  satisfy:
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• where the charge and current densities for a zero-thickness beam slice locate at 𝑧𝑏(𝑡) 

are
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• The boundary conditions for the conducting cylinder are

𝜙 𝑟 = 𝑎, 𝑧, 𝑡 = 0, 𝜙 𝑟, 𝑧 = 0, 𝑡 = 0

𝐴𝑧 𝑟 = 𝑎, 𝑧, 𝑡 = 0, 𝐴𝑧 𝑟, 𝑧 = 0, 𝑡 = 0

• The scalar and vector potentials inside the closed cavity are:
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where 𝑗0𝑛 is the nth zero of 𝐽0, and
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• The coefficients 𝐶𝑛 and 𝐷𝑛 are determined by matching the beam’s charge and current 

densities to the cavity modes:
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• In the small-hole approximation, the hole at 𝑧 = 𝐿 introduces an additional perturbation. 

Following Bethe’s theory, this perturbation is modeled as an effective magnetic dipole at 

the aperture. The induced magnetic dipole moment 𝑚𝜃 𝑡  is:
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• The perturbative correction to the vector potential due to the magnetic dipole is:
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• Then, the perturbative electric and magnetic fields components are:
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• Since the pure magnetic dipole does not directly generate a significant scalar potential, 

the perturbative radial electric field is negligible (no induced charges explicitly)

• The electric and magnetic fields are obtained from potentials:
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• Fields explicitly from perturbation:

𝐸𝑧,𝑑𝑖𝑝𝑜𝑙𝑒 𝑟, 𝑧, 𝑡 ≈ −
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• Total electromagnetic fields are sum of unperturbed fields and dipole-induced 

perturbations:

𝐸total 𝑟, 𝑧, 𝑡 = 𝐸0 𝑟, 𝑧, 𝑡 + 𝐸pert 𝑟, 𝑧, 𝑡

𝐵total 𝑟, 𝑧, 𝑡 = 𝐵0 𝑟, 𝑧, 𝑡 + 𝐵pert 𝑟, 𝑧, 𝑡
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