Introduction to CLARA facility $_{\rm OOO}$

Two-beam PWFA simulation

Betatron radiation analysis

Concluding Remarks

Plasma wakefield acceleration at CLARA (Simulation study for energy doubling)

H. Saberi, J. Zhang, O. Apsimon, S. Boogert, D. Angal-Kalinin, T. Pacey, T. Overton, R. D'Arcy, J. Farmer, A. Pukhov and G. Xia

Department of Physics and Astronomy, University of Manchester hossein.saberi@manchester.ac.uk

April 15, 2025

13–19 Apr 2025 Hotel Continental, Ischia Island (Naples, Italy

Hossein Saberi | LPAW2025

Plasma wakefield acceleration at CLARA

April 15, 2025 1 / 3

- **2** Two-beam PWFA simulation
- **3** Betatron radiation analysis
- **4** Concluding Remarks

- **2** Two-beam PWFA simulation
- **③** Betatron radiation analysis
- **4** Concluding Remarks

Betatron radiation analysis

Concluding Remarks

Compact Linear Accelerator for Research and Applications (CLARA)

- ► CLARA is a test facility at STFC Daresbury Laboratory.
- ▶ Delivers ultrabright electron bunches up to 250 MeV.
- ► FEBE beamline provides access to a dedicated shielded experiment area (hutch).
- ► Access to a high-power (100 TW; 25 fs; 5 Hz) Ti:Sapphire laser.

Image courtesy of D. Angal-Kalinin, CLARA User Meeting, 2024

(日)

Betatron radiation analysis

Concluding Remarks

Mid-energy range facilities at Europe

Facility	Maximum Beam Energy [MeV]	Bunch Charge [pC]	Bunch Length	Maximum Repetition Rate [Hz]	Micro- bunches per train	Micro-bunch Spacing
ARES	160	0.003 - 280	0.8 fs - 1 ps ^a	50	1	N/A
CLARA	250	5 - 250	$\leq 50 \text{ fs} - 10 \text{ ps}$	100	1	N/A
CLEAR	230	5 - 3000	100 fs - 10 ps	10	1 - 150	1.5 or 3 GHz
FLUTE	41	1 - 1000	1 fs - 300 fs	10	1	N/A
PITZ	22	0.1 - 5000	100 fs - 60 ps	10	1 - 4500	0.1 - 5 MHz ^b
SPARC_LAB	180	10 - 2000	20 fs - 10 ps	10	1 - 5 ^c	N/A

D. Angal-Kalinin D et al., IPAC23

^a Measured 20 fs as TDS is not fully operational

^b Besides fixed repetition rate, the selection of individual bunches in the train is also possible

^c Delay between bunches is 0.5 ps - 20 ns, whilst delays larger than ≈ 360 ps are achieved by injecting the bunches in different RF buckets

CLARA is comparable to CLEAR and SPARC_LAB, with a significant potential for plasma wakefield acceleration (PWFA) research.

• • • • • • •

- 一司

2 **Two-beam PWFA simulation**

4 Concluding Remarks

э

Betatron radiation analysis

Concluding Remarks

Schematic of the PWFA experiment

Research Focus

We investigate driver evolution, wakefield generation and witness acceleration inside plasma in this simulation study.

Hosse	in Sa	beri	LPAW2025

April 15, 2025 7 /

イロト イポト イヨト イヨ

2 **Two-beam PWFA simulation** Beam parameters

4 Concluding Remarks

э

CLARA Beam parameters

Parameter [Unit]	FEBE (general)	FEBE (for PWFA)
Energy [MeV]	50-250	250
Charge [pC]	5-250	250
Repetition rate [Hz]	100	100
RMS bunch length [fs]	50-10e3	50-100
RMS bunch radius [μ m]	50-100	50
RMS energy spread [%]	<5	1
Normalized emittance [mm-mrad]	<5	2

Table 1: Reference for FEBE parameters are E. W. Snedden et al., PRAB (2024) and D. Angal-Kalinin et al., Front. Phys. (2024)

э

イロト イポト イヨト イヨト

Betatron radiation analysis

Concluding Remarks

Two-beam parameters for PWFA

Parameter [Unit]	Driver beam	Witness beam
Energy [MeV]	250	250
Charge [pC]	150	10
Electrons per bunch [×10 ⁸]	9.4	0.6
RMS bunch length [fs]	50	33
RMS bunch radius [μ m]	50	10
RMS energy spread [%]	1	1
Normalized emittance [mm-mrad]	2	2

Two-bunch generation

Longitudinal bunch shaping is needed to generate driver and witness from the CLARA beam using the mask technology.

 ▶ < ≣ ▶ < ≡</td>

 April 15, 2025

- 一司

10 / 31

Two-beam parameters for PWFA

-

Parameter [Unit]	Driver beam	Witness beam
Energy [MeV]	250	250
Charge [pC]	150	10
Electrons per bunch [×10 ⁸]	9.4	0.6
RMS bunch length [fs]	50	33
RMS bunch radius [μ m]	50	10
RMS energy spread [%]	1	1
Normalized emittance [mm-mrad]	2	2
Bunch population [×10 ⁸]	9.4	0.62
Peak density [cm ⁻³]	$1.6 imes 10^{15}$	$4.0 imes 10^{15}$

Hossein Saberi	LPAW2025
----------------	----------

ъ

Simulation parameters

Simulation window

(x, y, z) Dimension $[k_p^{-1}]$	(7, 12, 12)
(x, y, z) Resolution $[k_p^{-1}]$	(0.1, 0.01, 0.01)
Time step $[\omega_{\rm p}^{-1}]$	5

Macroparticles per cell

Plasma	4
Driver	16
Witness	16

Other

W/D delay

Hossein Saberi | LPAW2025

Plasma wakefield acceleration at CLARA

► 4 Ξ

 $\lambda_{\rm p}/2$

April 15, 2025

► QV3D code.

Simulation experiment

- Computing resources provided by STFC Scientific Computing Departments SCARF cluster.
- ► Simulation approach
 - Simulate driver beam
 - Study witness acceleration
 - Study betatron radiation

Concluding Remarks

Plasma cell and its assumptions

- ► The length of plasma cell is 25 cm.
- ► Pre-ionized plasma is considered.
- ► Uniform plasma density.
- Density scan over $10^{15} 5 \times 10^{16} \text{ cm}^{-3}$.

Figure 1: Acceleration gradient that is needed for energy doubling (final energy of 500 MeV) over any specific distance.

P ► < E ► < E ►</p>
April 15, 2025

13 / 31

1 Introduction to CLARA facility

2 Two-beam PWFA simulation

Beam parameters Driver interaction with plasma

Witness beam acceleration

Betatron radiation analysis

4 Concluding Remarks

э

イロト 人間 トイヨト イヨト

April 15, 2025

・ロト ・聞 ト ・ ヨト ・ ヨト

15/31

ъ

No [cm⁻³] Hossein Saberi | LPAW2025

1016

0

1015

Betatron radiation analysis

April 15, 2025 16 / 31

ъ

イロト 人間 トイヨト イヨト

1 Introduction to CLARA facility

2 Two-beam PWFA simulation

Beam parameters Driver interaction with plasma Witness beam acceleration

Betatron radiation analysis

4 Concluding Remarks

э.

イロト イポト イヨト イヨト

Betatron radiation analysis

Concluding Remarks

ъ

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

×

700

Two-beam PWFA simulation 15 т

ъ

In this range of densities, the beam loses charge so the energy spread reduces.

イロト 人間 トイヨト イヨト

April 15, 2025

The beam-loading effect is evident in the maximum wakefield, as the witness field suppresses the driver wakefield.

Optimum plasma parameters

- ► According to current simulations, a plasma cell of length 15-25 centimeter is needed to achieve witness energy doubling.
- ► We may consider two set of parameters as the optimum plasma
 - Set I. A plasma cell of length 15 centimeter and density of 3×10^{16} cm⁻³.
 - $\circ~$ Set II. A plasma cell of length 20 centimeter and density of 2 $\times 10^{16}\, cm^{-3}.$
- ► In the following slides, we investigate betatron radiation in the PWFA within the plasma of Set II.

- **2** Two-beam PWFA simulation
- **3** Betatron radiation analysis

4 Concluding Remarks

ъ

イロト イポト イヨト イヨト

Betatron radiation analysis

Concluding Remarks

Betatron radiation

- Betatron radiation is a byproduct of plasma accelerators.
- The integrated radiation over 25-centimeter plasma is calculated.
- The proportion of driver and witness radiation is determined.

26 / 31

Radiation properties

< < >> < <</>

- **2** Two-beam PWFA simulation
- **3** Betatron radiation analysis

4 Concluding Remarks

ъ

イロト イポト イヨト イヨト

Summary and Conclusion

- Simulations indicate the witness beam energy doubling in a two-bunch PWFA at CLARA facility.
- Solution of the witness/driver beams and plasma were investigated.
- Betatron radiation in the experiment is mainly in the range of the low energy photons to UV.
- Further simulation and design studies will be conducted for this experiment in the future.

医水黄医水黄

32

く ロ と く 聞 と く 国 と く 国 と

Betatron radiation analysis

Concluding Remarks

Visit My Posters!

Plasma wakefield acceleration at CLARA

31 / 31

э