eli

Laser-Plasma-Accelerator-Based Compact Free Electron Laser PROGRAM at ELI Beamlines

Alexander Molodozhentsev

ELI ERIC / ELI Beamlines, Czech Republic

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254). This work was also supported by the project 'Advanced Research using High Intensity Laser produced Photons and Particles' (ADONIS) (CZ.02.1.01/0.0/0.0/16019/0000789) from European Regional Development Fund (ERDF). This project has received funding from the European Union's Horizon Europe research (EuPRAXIA PP and DN Project, and PACRI Project).

Alexander.Molodozhentsev@eli-beams.eu

Content

- Motivations and Challenges
- ELI Beamlines and LUIS Project:
 - Laser development at ELI Beamlines
 - Laser-Plasma electron Accelerator development
 - LPA-based Incoherent / Coherent Undulator Radiation Source
- **O** LPA-based compact FEL development in Connection with EuPRAXIA-ESFRI Project

• Motivations and Challenges

Motivations for Laser-Plasma-Accelerator-based Free Electron Laser:

- ✓ <u>Electron beam energy</u>, obtained experimentally by many LPA teams, exceeded the 1 GeV range with the peak current of a few kA and the bunch <u>duration</u> of a few fsec.
- ✓ LPA-based compact accelerator can produce a high-energy, <u>high-quality electron beam.</u>
- ✓ Control of the <u>'slice' energy spread</u>
- ✓ Laser repetition rate > 5 Hz

Development of the NEXT generation of FEL

F. Grüner, et al., Appl. Phys. B 86, 431 (2007) T. Eichner, et al., PR AB 10, 082401 (2007) M. Fuchs, et al., Nat. Phys. 5, 826 (2009)

Motivations and Challenges

Challenges for Laser-Plasma Accelerator aiming for FEL

- The RMS relative energy spread of the electron beam should be < 1 %
- The RMS transverse divergence of the electron beam should be < 1 mrad
- \circ **Preservation of the quality** of the high-energy electron beam (1 5 GeV)
- \circ High repetition rate (~ 100 Hz)
- Stable and repeatable operation

Motivations and Challenges

Challenges for Laser-Plasma Accelerator aiming for FEL

- The RMS relative energy spread of the electron beam **should be < 1 %**
- The RMS transverse divergence of the electron beam should be < 1 mrad
- \circ **Preservation of the quality** of the high-energy electron beam (1 5 GeV)
- **High repetition rate** (~ 100 Hz)
- **o** Stable and repeatable operation

How to Attack the Challenges

Experimental results High Quality e-beam / SIOM team (China)

Energy ~ 500 MeV Energy spread ~ 0.2-1.2% (RMS) Divergence ~ 0.1-0.4 mrad (RMS) Q_b=10-50 pC with limited statistics

Experimental results Stable operation / LUX team (DESY)

Energy ~ 80 MeV Energy spread ~ 1.3 % (RMS) Divergence ~ 5 mrad Q_b ~ 15 pC (**72'000 shots/6h**)

DOI: 10.1103/PhysRevAccelBeams.25.031301

https://doi.org/10.1038/s41586-021-03678-x

eli ELI Beamlines (ELI ERIC in the Czech Republic)

ELI Beamlines facility was opened in October 2015.

The implementation phase was completed in 2019 by the commissioning of the main laser and experimental systems.

ELI Beamlines (ELI ERIC in the Czech Republic)

E5 experimental area (length of the hall is around 50 m with a <u>possible extension</u> up to 100 m : **E5+E6**).

LUIS Project at ELI Beamlines

- \rightarrow LWFA-based undulator incoherent photon radiation source (We ~ 450 MeV, $\lambda_{ph,1}$ ~ 4 nm)
- → <u>based on</u> the LUX development at DESY (UHH/ELI Beamlines Collaboration)
- → <u>based on a novel high-repetition rate high-power laser system (L2-DUHA: 200 TW / 20-50-100 Hz)</u>

LUIS Project at ELI Beamlines

 \rightarrow LWFA-based undulator incoherent photon radiation source (W_e ~ 450 MeV, $\lambda_{ph,1}$ ~ 4 nm)

- → based on the LUX development at DESY (UHH/ELI Beamlines Collaboration)
- → based on a novel high-repetition rate high-power laser system (L2-DUHA: 150TW / 20-50 Hz)

EXAMPLE 1 Laser development at ELI Beamlines

L2-DUHA laser: LUIS dedicated

Parameters	Primary Acceptance Criteria	Design Requirement
Maximum pulse energy after compression, focused in the capillary	2 J	5 J
Minimum pulse energy after compression, focused in the capillary	0.5 J	0.5 J
Pulse energy variation	0.2 J	0.1 J
Pulse duration FWHM ¹ (after compression)	30 ÷ 40 fs	30 ÷ 40 fs
Pulse duration adjustment	2 fs	1 fs
Maximum peak power (after compression), focused in the capillary	53 (30fs) TW 40 (40fs) TW	158 (30fs) TW 118 (40fs) TW
Minimum peak power after compression, focused in the capillary	13 (30fs) TW 10 (40fs) TW	15.8 (30fs) TW 11.8 (40fs) TW
Repetition rate	1 Hz	3.33 Hz (10-25-50 Hz)
Beam format ²	Circular / 8 th order SG	Circular / 8 th order SG
Laser spot size (FWHM) on the off-axis parabola (focal length $\sim 2~m)$	80 mm	80 mm
Central wavelength	820 nm	820 nm
Beam quality (encircled energy in diffraction limited spot) ³	0.80	0.95
Output relative pulse energy RMS stability	2.5 %	< 1%
Output beam RMS pointing stability	< 2 µrad	< 1 µrad

Main laser parameters, required for the LUIS development

Commissioning (schedule) – 2nd half of 2025

Main expected electron beam parameters

Electron beam parameters from the LPA-source	Units	Commissioning stage	User- operation stage
Energy	MeV	300 ÷ 600	300 ÷ 600
RMS energy spread	%	< 5	< 1 → 0.5
Energy fluctuation (shot-to-shot)	%	< 5	< 1
Bunch charge	pC	~ 100	~ 50
Bunch charge fluctuation (shot-to- shot)	%	< 20	< 5 → 1
RMS transverse beam divergence	mrad	< 5	< 1 → 0.5
RMS norm. transverse emittance	π mm.mrad	< 2	< 1 → 0.2
Bunch duration (FWHM)	fsec	< 5	< 2

- Cryogenic helium-cooled pump laser using diode-pumped Yb:YAG slabs
- Designed for 50 Hz operation, currently at 20 Hz due to pump laser diodes
- Incorporates an OPCPA short-pulse chain
- Output pulses of 3 J with a duration of 25 fs
- Serves as the driver for a laser-driven XFEL testbed station
- Offers an auxiliary MID-IR (2.2 μm) beam
- Currently in the final phase of integration and testing
- Compressed pulses expected to be available in 2024

LUIS target chamber

Sapphire capillary

- Gas-cell (~ 2 cm)
- o Optional: Preformed plasma channel

All technologies are <u>fully integrated and tested</u> in the E5-hall including support/safety subsystems (vacuum/gas, MSS, PSI, central control system)

Technology verification was done using the L3-cropped beam / May 2024

Laser-Plasma electron Accelerator (LUIS)

PIC modeling of the laser-plasma interaction and electron beam acceleration Motivation: high-quality high-energy electron beam, suitable for LPA-based FEL

Staging approach in the gas-cell

(1) Self-truncated ionization injection(2) Acceleration

Table: Simulation Parameters ($I_0 = 1.0 \times 10^{19} \text{ W/cm}^2$; $P_L = 51 \text{ TW}$)

Energy ~ 400 -600 MeV Spread (FWHM) < 2% Divergence (FWHM) < 2 mrad Bunch charge ~ 15-30 pC

Credit: Srimanta Maity

https://doi.org/10.1088/1361-6587/ad238e

LUIS: LPA-based <u>Incoherent</u> Undulator Radiation Source

Undulator parameters

Undulator period	mm	5
Number of period		100
Total length	mm	500
On-axis magnetic field	Т	0.6
K-value		0.28

LUX – collaboration HPM planar undulator

Photon beam parameters (PHASE#1) / Estimation

		W _e = 300 MeV / Q _b =30pC	W _e = 600 MeV / Q _b =30pC
Photon energy (1 st harmonic)	eV	165	658
Photon wavelength (1 st harmonic)	nm	7.5	1.8
Number of photons (0.1%bw)		1.7×10 ⁵	7.1×10 ⁶
Peak Brilliance (at peak current of	*	4.8×10 ²⁰	1.9×10 ²¹
electron bunch)			
Effective beam size and divergence of the photon beam (1 st harmonic)			
Σx,γ	μm	114	114
Σx',y'	mrad	0.087	0.043

* photon/sec/mrad²/mm²/0.1%bw

Expected election beam parameters nom EFA				
Energy range	MeV	300 - 600		
Bunch charge	pC	~ 50		
RMS relative energy spread	%	<5 →<1		
RMS divergence	mrad	< 5 → < 1		

Main challenges:

- High repetition rate (from 20 Hz up to 50 Hz), utilizing the L2-DUHA high power laser
- Stable and repeatable operation
- Improvement of the LPA-based electron beam quality aiming at suitability for LPA-based FEL
- Electron @ Photon beam diagnostics

Laser-Plasma-Accelerator-Based FEL at ELI Beamlines

Future research directions

 An extensive experimental and numerical development would be necessary to produce electron beams with quality for efficient transport and focusing in demanding applications such as free-electron-lasers. These developments, due to their complexity, will require dedicated permanent facilities and teams. ELI can be a major step in this strategy.

Directions of implementation at ELI

 The ultimate goal of the Prague ELI-XFEL-beamline is to provide an installation which allows driving the new field of laser-driven XFELs towards future user facilities.

ELI Whitebook, Mourou et al., 2011

<u>EUV-FEL</u> ($W_e = 350 \text{ MeV} / \lambda_1 \approx 28 \text{ nm}$) as a possible usage of the LUIS beamline in combination with the Swiss-FEL undulator

https://doi.org/10.3390/instruments6010004

Single-unit undulator

'In-vacuum' hybrid PM planar → SwissFEL (Aramis) type

 $\lambda_u = 15 mm$ Gap = 3.6 mm $B_{peak} \sim 0.95 T *$ $K_0 = 1.30 *$ * gap=4.5mm

Scientific Goals:

- o demonstration of the SASE EUV-FEL and Seeded FEL regimes
- saturation in a single undulator unit (~ 4 m)
- L2-aux beam + HHG \rightarrow for seeding signal

LPA-based Coherent Undulator Radiation Source

<u>EUV-FEL</u> ($W_e = 350 \text{ MeV} / \lambda_1 \approx 28 \text{ nm}$) as a possible usage of the LUIS beamline in combination with the Swiss-FEL undulator

https://doi.org/10.3390/instruments6010004

Connection with the EuPRAXIA (ESFRI) Project

LPA-based <u>Coherent</u> Undulator Radiation Source

Conceptual solution to integrate the entire setup, including the photon beamlines and user stations, into the existing infrastructure of ELI-Beamlines.

LPA-based soft X-ray FEL is one of the goals of EuPRAXIA Consortium (Phase-1).

E5 experimental hall

10.18429/JACoW-IPAC2024-MOPG31

The **plasma photocathode** in combination with the **hybrid LWFA-PWFA** approach could reduce the length of the entire setup significantly. The dedicated R&D is required.

https://doi.org/10.1002/andp.202200655

Laser			
Pulse energy (in focus)	Joule	2.5	
Central wavelength	nm	820	
Pulse duration	fsec	25	
Laser intensity in focus	1018 W/cm2	5	
Laser spot radius in focus	μm	30	
Repetition rate	Hz	100)
LPA-Accelerator			
Plasma density	1018 cm-3	1	
Plasma length	mm	30	
Normalized potential (a_0)		< 1.9	
'Slice'' electron beam		\frown	
Electron beam energy	MeV	1000	
Peak current	kA	2.5	L
Normalized (RMS) emittance	mm.mrad	0.35	
RMS relative energy spread	%	0.3	
Photon radiation (K=1.6)		\ge	
Photon energy	eV	278	١
Radiation wavelength (h=1)	nm	4.5	/
Wavelength bandwidth	%	0.1	
Fotal photon flux	10 ¹¹ ph	1.0	
Peak power at saturation	GW	0.5	
Photon peak brilliance	10 ²⁹	3.0	
Saturation length	m	27	
Length without Photon Line	m	50	

Summary

- ✤ High-power High-Repetition rate novel Laser System (L2-DUHA) is under preparation at ELI-Beamlines → 1st L2-LUIS operation (plan): Q4-2025
- ✤ Incoherent undulator radiation source at ELI-Beamlines
 → commissioning during 2025-2026
- Coherent undulator radiation source (LPA-based FEL):

→ from XUV to soft X-ray FEL (EuPRAXIA-PHASE1 at ELI Beamlines)

Thank you for your attention.

Join us in a groundbreaking collaborative effort to establish the EuPRAXIA Laser-Plasma Accelerator pillar at ELI Beamlines.

