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A large amount of dark matter is needed to provide
Galaxy Rotation Curves stronger gravitational force.
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Dark matter mainly participates in gravitational interactions. It has very weak interactions with the particles
of the Standard Model and is extremely difficult to detect directly. Therefore, it is almost "invisible".
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Dense Axion Stars
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Axion laser Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes A Review of Axion LaSil‘lg in AStl‘OthSiCS
Jodo G. Rosa"" and Thomas W. Kephart™ . 1
) Liang Chen 2% and Thomas W. Kephart ¥*
]Dfpflrfafiielrf(J de Fisica da Universidade de Aveiro and CIDMA, Campus de Santiago, Aveiro 3810-183, Portugal g Che ° €p
“Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
. . . : . . 1 School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS,

M| (Received 29 September 2017; revised manuseript received 21 March 2018; published 4 June 2018) Hangzhou 310024, China; bqipd@protonmail.com

The superradiant instability can lead to the generation of extremely dense axion clouds around rotating s University of Chinese Academy of Sciences, Beljing 100190, China
black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
. . . L . . . *  Correspondence: tom.kephart@gmail.com
into photon pairs, stimulated decay becomes significant above a minimum axion density and leads to t  These authors contributed equally to this work
extremely bright lasers. The lasing threshold can be attained for axion masses g = 107 eV, which implies : ) ey ’
superradiant instabilities around spinning primordial black holes with mass 0.01 M. Although the latter Abstract: Axions can be stimulated to decay into photons by ambient photons of the right frequency

or by photons from the decay of neighboring axions. If the axion density is high enough, the
photon intensity can be amplified, which is a type of lasing or an axion maser. Here, we review the
astrophysical situations where axion lasing can appear and possibly be detected.
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A special dark matter candidate particle — axion &

f—"

its interaction with electromagnetic fields ' <1

0 Axions are theoretically proposed particles that emerge after the introduction of spontaneous

symmetry breaking in quantum chromodynamics and possess electromagnetic interactions.
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Current existing detection methods of axions.
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4. Interferometry

5. Quantum interferometry
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Coupling of axion and EM fields
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Field Perturbation Separation (FPS) method:
Considering E = Ey + E;, B =By + B,, E, Bysatisfy the Maxwell Egs. w/o axion V X By = 0:Eo + 30.

The axion generated
E,, B;satisfies:

VXBl

V.E — ’;‘1 ¢Gary Bo - Vb,
0
V- -B; =0,
V x Ey = —0;Bq,

c?0t

We solve two sets of Maxwell
Equations at the same time to
iInclude the axion generated EM

0 —F, + !L{]J]_ + g—[(fﬂtgsﬁ)Bg — FEy x VCD] fields.
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The theory prediction of the photon-axion conversion rate
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Laser plasma wakefield based axion generatiol
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EM fields in wakefield

MWy o ne ch

P1 = ——(gayy Bl)°

e Y eame 40
Typical Magnetic field 300T .{f}f O — \VE Q;,- —|- m’ a‘*’ = Ja~~ FE - B

B =

Advantage: Magnetic intensity and length (B1:10°Tm->10°Tm), conversion efficiency is 6
orders higher, the intense laser also increases the axion amount for another 6 orders.




Axion and secondary EM fields generation._ L

(83 -V +m§) ¢ = gaTwE - B,
V x B, =—-0,Bj,
V x By = 0;E1 + gavy [(0:90) By — Eg X V9

Laser: y polarized N, : Envelope of the drive laser

agp

E, = EN,},(Cmy,z)ei‘E“ + c.c.,
aoko -
B. = 2n N, (Co,y, 2)e’° + c.c.,
= kor — wot 1s the laser phase
§o 0 p
Wake fields: radial polarized
E_kpCﬂﬁ E:—B:@ﬂ
* 2 {.d()? Y ® 4 w[}?
k,zw
B, =0, E.=B,=-2""7
T U:' z Y 4 W

The main parts of E, B, i.e. E,;, B, come from both
laser fields & wakefields

The EM fields generated by axions (AREM) are
extremely weak and are labeled by E,, B;.

Source of axion: E .., ® Byyake
& EWake o B

Laser

k. z

a~~ oW i
Sa:gaTTE'B:gTT 0*p%p NTEEO‘}_C.C.

2&)0
(33 — V? —I—mz) o=28,.

¢ = o(x)N,((o,y, 2)e'%e +c.c.
Na(g[’}, Y, Z) — gawwaﬂwpkpZNw/(zw(})

Ea = kax — wot = & is the axion phase
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&) Character of Axion regenerated EM (AREM)

=

Description of the axion and AREM fields :Vector potential (A;, & Aj,)
2N, :
b= — “’fﬂ‘ Y. 2) sin(kx/2) sin(&, + kx/2),
oK
A, =— JaryNa (ka + wa) wy kypzlsin(kz /2)sin(k} z/2) sin(€P |+ &, 2/2)
'Y kaﬁk(l)fiiwﬂ a a)*ymp 1 1 1 )
_ _gﬂ’?"}’Nﬁ . (k&+wa) i / s re(1) /
A= T 5111(&:1:/2)[ En whkyysin(k]x/2) sin(&; 7|+ ki x/2)
— 9a0 Ny g [ Slr02/2) sin(o” |+ wgz/2) | sin(rhe/2) sin(6”| + wz/2) |
RGO, k'(l)
0 Ko K
k = kg — k, matching between laser & axion P X GayT Sine(kz/2),
2 2 2 . 2
= k(l)m w,& 't is the AREM phase Py 0¢ ¢7 X gayy@” sine®(kz/2),
Ai/ag < g2, x* sinc(kz/2) sinc(k'z/2).
Wi = pwo, kS = ke — ko, ka, ka + ko )
0.1.9 E, fields show new frequency components, 0wm,, ®,, 2@,
f“t’ — E; 1
E, fields show new spatial modes (LG, ) )




PIC simulations: Evolution and spatial dlstrlbutlons of

the axion and EM fields

Drive laser: a;=5 Laser field
Wose= W1 = 90Ag Lpuse= 12 Tg P <
Plasma: Te =70 + 5_?’1?1_ 50 - \
ng = 0.003n., n. = Enmewa/eg E -58
on = degmec?/(e?/w?) T & _
Axion: mg =10"%eV y(ﬂm)0'5° -20 Ox(;(j) "
Gayy =107 GeV ™!
x (pumn)

Axion field Axion generated E,, field
/,/ v \\ B /"/ \\
50 \ 50{
g 0O T 0
2 -50 = -50
N N
50 50
0 5 20 0
50 ) 50 160 4 (um
y (um) 20 g i) y (um) ()

E,: y and z polarized, high order LG mode




We decompose the fields of the AREM according to the Laguerre-Gaussian (LG) modes.

|| 2T 0o
2
Up] = Ap] 1 \/ﬁTL L|I| QT_J— e—”’iﬁ”ie—ﬂﬁ sz =/ d9/ dr ?‘J_A1upg
P Paw, \ w, P\ w? 0 0
En.,, E ~
217 ?50 | a1 )
Al ywn o Cpyp x / df sin?(8)e"? #£ 0 30 Nos
40 SR Laser & =50
=0, £2 S y wake fields 2
Al 0w : Cpr / dfsin(f)e ™" #£ 0 - 90
o Jo y (pm) _%0
=] 2m , 0 k.:/ kg
Alzw, ¢ Cpr X /n dfsin(@) cos(f)e ™"’ #0 B i )
E = 12 27 . i 0 ((Q |.,,_1|_|17_‘1';-{__;_._1.;3 5
A 501 Cy x df sin(8)e™! 0 oo 0 *
L2200 Pt /n (6)e™ # AREM fields ™ ;
[ = +1 - 50 4
y(pm) O 5 N K
Order of EM field, polarization, frequency ) 0 k)/k,
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@ X Gy~ sinc(kx/2),

P, x ¢* x gg,},,} z?|sinc?(kx /2),

Ai/ap gﬁ,r 2?|sinc(kx/2) sinc(k'z/2).

Generation efficiency compared with ALPS-II

— 4 - .
A -
= (a) 6=
. 2
) =
=2 ‘ =
s 2 5
~ 0 * 0
0 5 10

distance (mm)

The efficiency can be increased by extending the guiding length.
However, even the laser is well guided, photon & axion phase
mismatching will limit the axion generation. The maximum
distance is limited by:

r < lg = 27w/ |k|  Axion mismatch with laser photon
r < I, = 2w/ |k|" Axion mismatch with AREM photon

e

m, = w;r),(zﬂ:;

can lower the
limitation of the detectable
axion mass. Using beam driven?

-6 -4 -2 0
loggma (eV)
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Axion
generation

Axion detection

€ Meter scale interaction, weak AREM. N,~1
Single photon detection
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Wakefield based axion generation & detection
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AREM detection
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Summary e

Axion is one of the candidate particles of dark matter. Its coupling with the EM field (Primakoff
effect ) provides a possible way for intense laser based dark matter searching.

Plasma wake can support huge E and B fields. When it interacts with a well guided intense
laser, axions can be generated. The inverse process can generate secondary EM fields, which
shows higher frequency and spatial modes.

The intense fields from both of the laser and wake make the axion generation efficiency in this
scheme is orders of magnitude higher than the existed schemes. It may also be a new
application of LWFA.

For shorter distance (meter long) interaction, the AREM photon number is limited, one should
combine the wakefield based axion generation with the LSW scheme to detect the axion. If
one wants to use AREM to detect the axions, long distance wake & laser guiding inside the
bubble is still required. Beam driven may be a solution. Km level “AWAKE" based axion

Thanks for your attention!
minchen@sjtu.edu.cn
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