

Laser-Driven Proton Sources for Efficient Radiation Testing

B. D'Orsi, C. Altomare, A. Ampollini, M.D. Astorino, G. Bazzano, E. Catrix, A. Cemmi, A. Colangeli, J. Di Sarcina, D. S. Lazzaro, R. Lelièvre, S. Loreti, S. Fourmaux, J. Fuchs, P. Nenzi, G. Pagano, F. Panza, C. Ronsivalle, J. Scifo, S. Vallières and P. Antici

Aim of the work

Aim of the work (2)

Electronic components characterization before and after irradiation

Microsemi. TECHNICAL DATASHEET – 2N2222A NPN silicon switching transistor.

Microsemi. TECHNICAL DATASHEET – 2N2907A PNP small signal silicon transistor.

 $Skyworks.\ TECHNICAL\ DATASHEET\ -\ OLS249:\ Radiation\ -\ Tolerant\ Phototransistor\ Hermetic\ Surface\ -\ Mount\ Optocoupler.$

Irradiation facilities: Italy and Canada

Possible radiation effects on electronics

Not applicable in this study

The active material of electronic devices is often made of **silicon**.

Leroy C, Rancoita PG. Particle interaction and displacement damage in silicon devices operated in radiation environments. Reports Prog Phys. 2007;70(4):493–625

Typical radiation effects on BJTs (as easiest semiconductor component)

J Assaf 2018 Chinese Phys. B 27 016103

Radiation Handbook for electronics, Texas Instruments (2018) www.ti.com/radbook

COTS BJTs: Radiation effects evaluation

To evaluate the radiation effect, the β parameter, corresponding to the transistor current gain, the **leakage currents** and saturation voltages were measured.

COTS BJTs: Summary of performed irradiation tests

The components were characterized **before** and **after** irradiation.

	<u>COTS</u> NPN bipolar transistor (2N2222A)	<u>COTS</u> PNP bipolar transistor (2N2907A)	
Gamma irradiation (Calliope)	\checkmark	\checkmark	ENE
Neutron (FNG)	\checkmark	\checkmark	
Protons (TOP IMPLART)	\checkmark	\checkmark	
Proton irradiation (ALLS)	\checkmark	Next step	R

COTS BJTs: gamma irradiation tests and measurements - 1

36 samples (18 NPN and 18 PNP BJTs)
two for each irradiation condition
Irradiation at different absorbed doses

• Dose rate = ~ 1 kGy(Si)/h

Irradiation test	Total absorbed dose (kGy)
1	~1
2	~2.2
3	~26
4	~70
5	~120
6	~240
7	~320
8	~420
9	~520

COTS

All samples were biased during irradiation (+30 V).

Irradiation tests:

Irradiation at room temperature and parametric tests after irradiation

Annealing followed by parametric tests:

-24 hours at room temperature

-168 hours at 100 °C

1 kGy(Si): 1 kGy absorbed dose in silicon. All reported doses are referred to silicon.

COTS BJTs: annealing tests and measurements - 4

Time (h)

After irradiation, two annealing tests were performed in order to evaluate the **recovery** of the parameters.

Absorbed dose (kGy)

COTS BJTs: neutron irradiation tests and measurements - 1

14 MeV neutrons

ASTM E722-19: Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics https://www.sr-niel.org/index.php/sr-niel-web-calculators/niel-calculator-for-neutrons-using-astm-standards/neutrons-niel-calculator

neutron irradiation tests and measurements - 2

COTS BJTs:

HEAVILY damaged NPN **HEAVILY** damaged **PNP** after: after: 300 βı 140 β1 >50 5.0 · 10¹² n/cm² 7.0 · 10¹² β1 >75 β₂ **Datasheet** β₂ n/cm² >75 Datasheet 3.5 · 10¹² n/cm² 120 β3 β₂ >100 250 β₃ 8.0 · 10¹² n/cm² >100 2.5 · 10¹² n/cm² β₄ β₃ >100 1.5 · 10¹³ n/cm² β4 >100 100 2.0 ☉· 10¹² n/cm² Current gain ^عد از β_5 β4 >100 No out of range β₅ >30 Current gain β No out of range >50 No out of range 80 150 · 60 · - β₁, 100 40 β₂, β3 50 20 β₄ β_5 0 0,00E+000 5,00E+012 1,00E+013 1,50E+013 2,00E+013 0,00E+000 5,00E+012 1,00E+013 1.50E+013 2.00E+013 Neutron fluence (n/cm²) Neutron fluence (n/cm^2) No recovery after annealing tests 14

14 MeV neutrons

COTS BJTs: samples preparation for proton irradiation (TOP IMPLART and ALLS)

COTS BJTs: proton irradiation (TOP IMPLART) and measurements - 1

COTS

Irradiation

setup

All samples were unbiased

during irradiation.

- **12 decapped samples** (6 NPN and 6 PNP BJTs) two for each irradiation condition
- Irradiation up to different proton fluences (2.8 MeV protons)

Irradiation test	Proton fluence
1	3.38 ☉ 10 ⁹ p/cm ²
2	$3.38 \odot 10^{10} p/cm^2$
3	$2.5 \odot 10^{11} \text{p/cm}^2$

Irradiation at room temperature and parametric test after irradiation

Annealing followed by parametric tests: -24 hours at room temperature -168 hours at 100 °C

ASTM E722-19: Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics https://www.sr-niel.org/index.php/sr-niel-web-calculators/niel-calculator-for-neutrons-using-astm-standards/neutrons-niel-calculator

COTS BJTs: proton irradiation (TOP IMPLART) and measurements - 2

Conventional protons

COTS BJTs: proton irradiation tests (ALLS) and measurements - 1

• 6 decapped samples (NPN BJTs)

• Irradiation at different absorbed doses

Irradiation test	Number of shots
1	1
2	5
3	50
4	100
5	250
6	400

Irradiation setup

All samples were unbiased during irradiation.

Irradiation tests:

Irradiation at room temperature and parametric test after irradiation

Annealing followed by parametric tests: -24 hours at room temperature -168 hours at 100 °C

COTS BJTs: proton irradiation tests (ALLS) and measurements - 2

Laser-driven protons

Dose deposition study

Energy [MeV]

Leroy C, Rancoita PG. Principles of Radiation Interaction in Matter and Detection. WORLD SCIENTIFIC (2016).

Results summary

The results obtained after irradiation of BJTs and the results of the dose deposition study were merged.

Doses/fluen		ses/fluences		ses/fluences		PN	Gamma	a Neutrons	Conventional protons	Laser-dri proton	ven Pi s	NP Ga	mma	Neutrons	Conventional protons
		ising goin t	to	β1	8 kGy	5.0 · 10 ¹² n/cm	¹² 1.2☉ · 10 ¹¹ p/cm ²	4 shots	3	β ₁ 15	5 kGy	7.0☉ • 10 ¹² n/cm ²	2.1☉ • 10 ¹¹ p/cm ²		
	exit allowed ranges			β ₂	7 kGy	3.5 · 10 ¹² n/cm	² 0.8 · 10 ¹¹ p/cm ²	3 shots	6	<mark>β</mark> 2 20) kGy	8.0 · 10 ¹² n/cm ²	2.5 · 10 ¹¹ p/cm ²		
				β ₃	3 kGy	2.5 · 10 ¹² n/cm	² 0.5 · 10 ¹¹ p/cm ²	2 shots	3	<mark>β</mark> 3 35	i kGy	1.5 · 10 ¹³ n/cm ²	/		
			Ides		600 Gy	2.0 ☉ 10 ¹² n/cr	n ² 0.4 ☉ 10 ¹¹ p/cm ²	2 shots	3	β ₄ 20) kGy	/	/		
				β ₅	100 kG	/ /	1.8 ☉· 10 ¹¹ p/cm²	1		β ₅ 70) kGy	/	/		
N	NPN		Gamma	Neu	itrons	Conventional protons	Laser-driven protons	All the transf absor	e values we formed into bed doses	re					
	0	Dose _{TOTAL}	8 kGy	62.	.5 Gy	2.05 kGy	13.6 Gy	PNP					0		
	P ₁	Dose _{NIFI}	0.06 GV	2			0.01.0			0			Conventional		
			0.00 0 y	3.0	0 Gy	0.46 Gy	0.01 Gy			Gamma		Neutrons	protons		
	ßa	Dose _{TOTAL}	7 kGy	43.	0 Gy 8 Gy	0.46 Gy 1.37 kGy	0.01 Gy 10.2 Gy	0	Dose _{TOTAL}	15 kGy		87.5 Gy	protons 3.02 kGy		
	β ₂	Dose _{TOTAL} Dose _{NIEL}	7 kGy 0.06 Gy	43.	0 Gy .8 Gy 1 Gy	0.46 Gy 1.37 kGy 0.31 Gy	0.01 Gy 10.2 Gy 0.01 Gy	β ₁	Dose _{total} Dose _{NIEL}	15 kGy	э Эу	87.5 Gy 4.3 Gy	protons 3.02 kGy 0.83 Gy		
	β ₂	Dose _{TOTAL} Dose _{NIEL} Dose _{TOTAL}	7 kGy 0.06 Gy 3 kGy	43. 2. 31.	0 Gy .8 Gy 1 Gy 3 Gy	0.46 Gy 1.37 kGy 0.31 Gy 856 Gy	0.01 Gy 10.2 Gy 0.01 Gy 6.8 Gy	β1	Dose _{TOTAL} Dose _{NIEL} Dose _{TOTAL}	15 kGy 1.2 · 10 ⁻¹ (20 kGy	Gy	87.5 Gy 4.3 Gy 100 Gy	protons 3.02 kGy 0.83 Gy 3.6 kGy		
	β ₂ β ₃	Dose _{TOTAL} Dose _{NIEL} Dose _{NIEL}	7 kGy 0.06 Gy 3 kGy 0.02 Gy	43. 2.7 31. 1.1	0 Gy .8 Gy 1 Gy 3 Gy 5 Gy	0.46 Gy 1.37 kGy 0.31 Gy 856 Gy 0.24 Gy	0.01 Gy 10.2 Gy 0.01 Gy 6.8 Gy 5.0 · 10 ⁻³ Gy	β ₁ β ₂	Dose _{TOTAL} Dose _{NIEL} Dose _{TOTAL} Dose _{NIEL}	15 kGy 1.2 · 10 ⁻¹ (20 kGy 1.6 · 10 ⁻¹ (Эу Эу	87.5 Gy 4.3 Gy 100 Gy 5 Gy	protons 3.02 kGy 0.83 Gy 3.6 kGy 1 Gy		
	β ₂ β ₃	Dose _{TOTAL} Dose _{NIEL} Dose _{NIEL} Dose _{NIEL}	7 kGy 0.06 Gy 3 kGy 0.02 Gy 600 Gy	3.0 43. 2. ⁻ 31. 1.5 25	0 Gy .8 Gy 1 Gy .3 Gy 5 Gy	0.46 Gy 1.37 kGy 0.31 Gy 856 Gy 0.24 Gy 685 Gy	0.01 Gy 10.2 Gy 0.01 Gy 6.8 Gy 5.0 · 10 ⁻³ Gy 6.8 Gy	β ₁ β ₂	Dose _{TOTAL} Dose _{NIEL} Dose _{TOTAL} Dose _{NIEL}	15 kGy 1.2 · 10 ⁻¹ (20 kGy 1.6 · 10 ⁻¹ (Эу Эу Эу	87.5 Gy 4.3 Gy 100 Gy 5 Gy	protons 3.02 kGy 0.83 Gy 3.6 kGy 1 Gy		

Dose irradiation effects by different sources

NPN		Gamma	Neutrons	Conventional protons	Laser-driven protons
β ₁	Dose _{TOTAL}	8 kGy	62.5 Gy	2.05 kGy	13.6 Gy
β2	Dose _{TOTAL}	7 kGy	43.8 Gy	1.37 kGy	10.2 Gy
β3	Dose _{TOTAL}	3 kGy	31.3 Gy	856 Gy	6.8 Gy
β4	Dose _{TOTAL}	600 Gy	25 Gy	685 Gy	6.8 Gy

- Gamma radiation highest required absorbed dose
- Laser-driven protons lowest required dose

- Two orders of magnitude difference in total absorbed dose for conventional protons and laser-driven protons
- Approximately the same amount of protons
- A significant distinction lies in the **total irradiation time** and **pulse length** between proton bunches: <u>Conventional</u>: pulse length 400 s to deliver 10¹¹ protons
 - Laser-driven: pulse length 13 ns to deliver 0.2 010¹¹ protons and 6 seconds to deliver 10¹¹ protons.
 - Therefore laser-driven protons require two order of magnitude less time to deliver the same amount of protons.

Laser-driven protons can reproduce intense mechanical and thermal damage within a very short timeframe, preventing material recovery. 22

B. D'Orsi et al., in review at Sci. Rep.

Laser-acceleration ions can be used for testing electronic components/systems that require radiation hardening

Similar to Radiobiological effectiveness (RBE) in biological applications, these particles can be more efficient than other conventional stress testing methods

The efficiency comes from the very short and intense dose delivery, that does not allow the materials to relax and makes the dose "more efficient" (equivalent to FLASH therapy in cancer treatment)