

Stefan Karsch Ludwig-Maximilians-Universität München Garching, Germany

#### ATLAS-3000 @ CALA



#### ATLAS-3000 performance



ATLAS-3000 is quite stable...

... however, electrons aren't always:



Comparable to: -Bella (~0.5%)
-Angus (~1%)



#### Which laser parameters cause fluctuations?



#### Average wavefront at the laser output:



#### LWFA with slit nozzle and optical injection



→ see Johannes Zirkelbach's talk (next in this session)

 $\Phi(\lambda)$  0.04

0.02

0.00

-0.02



#### New single-shot diagnostics

Real-time Acquisition of Vectorial Electromagnetic Near-fields (RAVEN) – single shot vector field measurement



for more details:

→ see Andreas Döpp's invited talk, Thursday, 11:00 am.



#### Hybrid laser-plasma wakefield acceleration (LPWFA)

- how do we achieve ultracold electron beams for future wakefield accelerators and compact light sources?
- how can we study basic PWFA physics with high accessibility in a scalable toy model?

Idea: Drive a PWFA with electrons from an LWFA



## Hybrid LPWFA milestones



Hybrid collaboration (since 2017)











## Plasma Wave Shadowgraphy: Elongated first bubble



## Plasma Wave Shadowgraphy: Elongated first bubble

trigger injection with shock in PWFA:



Direct influence of witness' space charge field

→ can we learn more about witness current?

# Some first bubbles are broken: correlated to broadband witness



- can the morphology be related to injected charge/monochromatic vs. broadband acceleration?
- did we observe resonant wake enhancement in the beam-driven case?





[2023\_GOLOVANOV et al.\_Energy-Conserving Theory of the Blowout Regime of Plasma Wakefield doi:10.1103/PhysRevLett.130.105001]



# Next steps:Transformer Ratio Challenge

100 GeV/m gradients, but witness beams start at zero energy ⇒ typical final energy ~ 50% of driver energy

Potential cause low-energy driver, short PWFA target with long gradients





## Laser development for P-MoPA @ CALA

Two synchronized laser systems:

- PFS (7 J, 700 fs, I-10 Hz): Diode-pumped CPA thick disk homebuilt prototype OPCPA pump, excellent near & far field
- PFS-pro: (120-200 mJ, 1.3 ps, 1 kHz + 80 mJ, 50 fs, 1 kHz): Prototype for Trumpf DIRA CPA disk laser + Herriott cell

Both multi-% wall-plug efficiency



Current: I Hz test experiment PFS/PFS-pro 120 mJ 700 fs 1.3 ps 80 mJ 50 fs HOFI HOFI Main Seed Probe 1.5J 1.5 J 1 J 75 mJ 5 mJ DS



# Ist steps for P-MoPA @ CALA (w/ S. Hooker's group, UOxf.)





#### Acknowledgements to:

CALA





















CALA















HZDR













Weizmann





LOA







Strathclyde/HHUD















