

Increasing the energy of high-quality electron bunches from a hybrid L-PWFA

Moritz Foerster (LMU Munich, Karsch group)

on behalf of the Hybrid Collaboration:

[4] Couperus, Phys.Rev.Res. 2021 [5] Foerster, Phys.Rev.X, 2022 LPAW 2025

ISCHIA ISLAND, ITALY

[1] Götzfried, Phys.Rev.X, 2020

[2] Gilljohann, Phys.Rev.X, 2019

[3] Kurz, Nat.Comm. 2021

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

Moritz Foerster for the Hybrid Collaboration

LPAW 2025

[3] Kurz, Nat.Comm. 2021[4] Couperus, Phys.Rev.Res. 2021[5] Foerster, Phys.Rev.X, 2022

[1] Götzfried, Phys.Rev.X, 2020

[2] Gilljohann, Phys.Rev.X, 2019

[1]

LWFA

ISCHIA ISLAND, ITALY

[1] Götzfried, Phys.Rev.X, 2020
[2] Gilljohann, Phys.Rev.X, 2019
[3] Kurz, Nat.Comm. 2021
[4] Couperus, Phys.Rev.Res. 2021
[5] Foerster, Phys.Rev.X, 2022

PWFA

PWFA [4,5] Energy [2,3]

CALA

Götzfried, Phys.Rev.X, 2020
Gilljohann, Phys.Rev.X, 2019
Kurz, Nat.Comm. 2021
Couperus, Phys.Rev.Res. 2021
Foerster, Phys.Rev.X, 2022

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

Moritz Foerster for the Hybrid Collaboration

Hybrid L-PWFA

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

	Be	eam quality	0.0	о pC/(М	1. O IeV mra	- 1.5 d)	2.0		
[mrad]	3 -(a) 0 - –3 - LWFA alone								
ergence	3 - (b) Witness 0 - 0 - Q _{witness} ~ 35pC no preionization of PWFA								
Div									
	г 0) 100 20	0	300		400			

100 200 300 400 Energy [MeV]

	Beam quality	0.0 0.5 pC/(н н о 5 MeV mrad)	2.0	
mrad]	3 -(a) 0 - 3 -	LWFA alc	one		
rgence [3 -(b) Witness 0 - —3 - <i>Q_{witness} ~</i> 35 <i>pC</i> r	o preionization of	PWFA		
Dive	3 -(c) 0 - _3 - <i>Q_{witness} ~</i> 87 <i>pC</i> /b	ad' preionization c	of PWFA		

	Beam	quality	0.0	o ப ப pC/(MeV mrad		
mrad] I	3 -(a) 0 - 3 -		LW	FA alone		
rgence [I	3 -(b) 0 - 3 -	Witnes Q _{witness} ~ 35pC	s no preionizati	on of PWFA		
Dive	3 -(c) 0 - 3 -	Q _{witness} ~ 87pC	bad' preioniza	ation of PWFA		
_	3 -(d) 0 - 3 -	Q _{witness} ~ 144pC	homogeneou	s preionization	of PWFA	
	0	100 20 En)0	800	400	

Beam quality

- Net gain in angular-spectral charge density^[1]
 - Useful for applications

- Avoid mistakes
 - Here: non-ideal plasma density profile

- Avoid mistakes
 - Here: too long PWFA target
 - Depletion

Probing data: F. Haberstroh et al., to be submitted

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

- Avoid mistakes
 - Here: too long PWFA target
 - Depletion

Plasma wave at the end of the PWFA target

Probing data: F. Haberstroh et al., to be submitted

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

- Avoid mistakes
 - Here: too long PWFA target
 - Depletion

Plasma wave at the end of the PWFA target

Driver depleted First bubble shrinks

Probing data: F. Haberstroh et al., to be submitted

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

• Driver depletion also visible in PIC simulations

Witness still gains energy

• Driver depletion also visible in PIC simulations

Simulations provided by J. Zirkelbach

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

Increasing witness energy

Driver depletion also visible in PIC simulations

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

Driver-generation:

- LWFA using ~10J, 30 fs laser
- Self-truncated ionization injection (STII) in a 15mm slit nozzle (H2 + 2% N2)

Driver-generation:

- LWFA using ~10J, 30 fs laser
- Self-truncated ionization injection (STII) in a 15mm slit nozzle (H2 + 2% N2)

PWFA target: 10mm slit nozzle (H2) wire-generated shock for injection

Moritz Foerster for the Hybrid Collaboration

From LWFA

LPAW 2025

Ischia Island, Italy

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

· 3.0

- 2.5

- 2.0

Latest experiments

350 ·

300

250

Moritz Foerster for the Hybrid Collaboration

LPAW 2025

ISCHIA ISLAND, ITALY

2

Remaining limitations

- Drive beam determines wakefield
- Flatter field for longer drive beam
- Sets depletion length

Future plans

• Drive beam shaping

Future plans

• Drive beam shaping

Typical LWFA beams are short ^[1,2]: ~5-15 fs/~2-5µm

Not ideal for our densities of $\sim 2x10^{18}$ 1/cm³

Experiments at higher density unsuccessful

-> Generate longer drive beams

[1] Heigoldt, Phys.Rev.A.B., 2014[2] LaBerge, Nat.Phot., 2024

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

ISCHIA ISLAND, ITALY

CALA IMU

Questions?

High-quality beams,

accelerated to high energies,

MORITZ FOERSTER FOR THE HYBRID COLLABORATION

LPAW 2025

ISCHIA ISLAND, ITALY

and still ideas to improve!