Plasma accelerating module

TDR Review committee 26-28 June 2024

Angelo Biagioni

EuPRAXIA	Current status	Plasma accelerating module(61%)	Technical design (83%) Writing(40		
		10.1 Introduction	100%	100%	
		10.2 Plasma module design			
		10.2.1 Plasma sources	70%	60%	
		10.2.2 HV-sources for plasma creation	100%	100%	
		10.2.3 Plasma discharge stabilizaiton	100%	100%	
		10.3 Plasma chamber design	20%	20%	
		10.3.1 Focusing and extraction systems	Beam physics		
		10.3.2 Capillary supports and handling	70%	0%	
		10.4 Vacuum pumping system	60%	30%	
		10.5 Diagnostics			
		10.5.1 Plasma diagnostics	100%	50%	
		10.5.1.1 Stark broadening technique	100%	100%	
		10.5.1.2 Interferometric techniques	100%	0%	
		10.5.2 Beam diagnostics	Beam diagnostics		
		10.6 High repetition rate plasma sources	80%	80%	
		10.7 Future developments			
		10.7.1 Segmented capillary	100%	0%	
		10.7.2 All-in-one capillary	100%	0%	
		10.7.3 APL collimator system	70%	0%	
		10.8 Plasma module safety system	80%	0%	

Istituto Nazionale di Fisica Nucleare

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 2/17

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 3/17

To operate at high repetition rate with gas-filled capillary-discharge the key point is the thermal dissipation

$$T_{e}(eV) = 5.7 \left[\frac{I(kA)}{r_{cap}(mm)} \right]^{2/5} \sim 4 eV \qquad q = -\frac{1}{2} k(T) \nabla T$$

$$I = 400 A$$

$$d = 2 mm$$

$$Thermal conductivity \qquad 93 W/mK at 25^{\circ}C Shapal$$

~ 1 m

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 4/17

EUPRA

High repetition rate plasma sources-walls material

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 5/17

High repetition rate plasma sources-walls material

Istituto Nazionale di Fisica Nucleare

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 7/17

Electro-valve Pressure regulator HV-pulser Gas injection Electrode ΗV _____ generator Capillary Plasma Laser light pulse Vacuur source Delay generator chamber 🗾 L3 1_1 Measure after: 1.2 0 shots 10 million shots 1.0 20 million shots Spectrometer_2 L_2 a 0.8 Spectrometer 1 0.6 루 0.4 σ 0.2 Laser Longitudinal profile Nor 0.0 ICCD camera Transverse -0.2 -2.0 -1.5 profile Lase spot

High repetition rate plasma sources-walls material

30 - 150 Hz repetition rate discharges

2 mm

0.0

Horizontal position [mm]

0.5 1.0

-0.5

- a laser beam passes through the plasma formation channel, any changes in the transverse spot were observed.
- shot-to-shot fluctuations in the laser profile are observed, but the transverse size (2 mm) remains the same for all measurements taken from 0 to 20 million shots

High repetition rate plasma sources-walls material

High repetition rate plasma sources - 60 cm long plasma source

1.1 GeV (1.5 GV/m 600 MeV in **40cm** long capillary - density 10^{16} cm-3):

- 3D printed plastic material
- 6 uniform inlets
- Density range 10¹⁶ -10¹⁷ cm⁻³
- 9-10 kV 380 A
- 100 Hz rep Rate

1.1 GeV (1 GV/m 600 MeV in **60cm** long capillary - density 10^{16} cm-3):

- Fabrication by machining
- 10 increasing diameter
- Density range 10¹⁶ 10¹⁷ cm⁻³
- 10-15 kV with 400 500 A
- 100 Hz rep Rate

Design 60 cm long capillary

- 10 injectors of constant diameter and progressively closer together
- 10 injectors progressively closer together and having progressively increasing diameters
- Variability of up to 20 % in lateral areas depending on the application

Design 60 cm long capillary:

- Support for gas injection and attaching electrodes that contains the injectors and plasma channel
- Common ground electrode to separate two sections
- Prototype in plastic but the final device will be in Macor (holder)/Shapal (channel and inlets)

High repetition rate plasma sources - 60 cm long plasma source

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 12/17

High repetition rate plasma sources- HV source

In principle, there are no limitations to high repetition rate (>400 Hz) for HV generator and pulser but overheating problems could cause damage

High repetition rate plasma sources- HV source

For higher repRATE an oil cooling system for SCR component will be used (in box)

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 14/17

High repetition rate plasma sources – Vacuum system

Istituto Nazionale di Fisica Nucleare

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 15/17

E ^t PRA IA	Next steps		Current status		Next status (next TDR meeting)	
	1	Plasma accelerating module(61%)_(90%)	TD (83%)	W(40%)	nextTD(91%)	nextW(89%)
		10.1 Introduction	100%	100%	100%	100%
		10.2 Plasma module design				
		10.2.1 Plasma sources	70%	60%	100%	100%
		10.2.2 HV-sources for plasma creation	100%	100%	100%	100%
		10.2.3 Plasma discharge stabilizaiton	100%	100%	100%	100%
		10.3 Plasma chamber design	20%	20%	50%	50%
		10.3.1 Focusing and extraction systems	BP	BP	BP	BP
		10.3.2 Capillary supports and handling	70%	0%	70%	70%
		10.4 Vacuum pumping system	60%	30%	80%	80%
		10.5 Diagnostics				
		10.5.1 Plasma diagnostics	100%	50%	100%	100%
		10.5.1.1 Stark broadening technique	100%	100%	100%	100%
		10.5.1.2 Interferometric techniques	100%	0%	100%	100%
		10.5.2 Beam diagnostics	BD	BD	BD	BD
		10.6 High repetition rate plasma sources	80%	80%	100%	100%
		10.7 Future developments				
		10.7.1 Segmented capillary	100%	0%	100%	100%
		10.7.2 All-in-one capillary	100%	0%	100%	100%
		10.7.3 APL collimator system	70%	0%	70%	50%
		10.8 Plasma module safety system	80%	0%	100	100%

Thank you for your attention

Angelo.Biagioni@Inf.infn.it | TDR Review committee 26 – 28 June 2024 | Page 15/17