NEXT_NAMASSTE

NEXTAnoMagrfetsquantumEnsimpdDataToragE

RL: F. Brero RNA Lascialfari

General information

Project duration: 2025-2027	FTE Pavia 2025		1.2
INFN Units:	Brero Francesca RL	RTD-A UNIPV	0.3
BO, FI, MI, PV External collaborators : Manuel Mariani, INFN-MI and UNIPV Paolo Santini, UNIPR and INFN-PR	Filibian Marta	Tec. UNIPV	0.2
	Lascialfari Alessandro RN	PO UNIPV	0.4
	Robustelli Test Agnese	PhD UNIPV	0.3
	Giroletti Elio	??	??

Results from NAMASSTE (same Units, RN M. Mariani) Quantum sensing by NMR and SQUID

Results from NAMASSTE (same Units, RN M. Mariani) Spin dynamics by NMR and DC magnetization

Tb-SQ : good fit of M vs T. NMR τ_c follows an Arrhenius law with a gap ~ 2nd excited level gap
 Dy-SQ : good fit of M vs T. NMR τ_c follows an Arrhenius law with a gap ~ 4th excited level gap

Results from NAMASSTE (same Units, RN M. Mariani) Spin dynamics by MUSR and ac χ

- Tb-SQ : in presence of exchange interaction \Rightarrow BPP law, with distribution of correlation times
- Tb-trp : effect of the "absence" of exchange interaction on spin dynamics (and magnetization slowing down)
- Thus, peculiar field effect on the relaxation time τ for Tb-trp

Planned activities for NEXT_NAMASSTE. I

Quantum Sensing of particles and radiation

- Mn12- tbu sample, B//c : use of proper shielding for α (combined effect of impinging β particles and γ radiation) and for β (effect of γ radiation only) particles (NMR, SQUID, continuous and pulsed EPR)
- Mn12-tbu sample, (B_{ac},c) ~10° & (B_{DC},c) ~10° : effect on MUSR spectra and SQUID magnetization (v_{ac}=1-1000 Hz)
- Mn12-tbu sample : MUSR relaxation at T<1K (B=B_{cross}), with and without impinging particles
- Development of theoretical models to simulate the impact of radiation on Molecular Nanomagnets spin dynamics

 $[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(CH_3OH)_4] \cdot CH_3OH$

 $Figure 1. ORTEP view of the molecular structure of <math display="inline">[Mn_{12}O_{12}(Bu-CH_2-CO_2)_{16}(CH_3OH)_4]$ -2CH₃OH. Mn^{III} sites are reported in blue, Mn^{IV} in green, oxygen in red, and carbon atoms in pale gray. Three terr-butyl groups in the labeled region have been omitted for clarity sake.

Planned activities for NEXT_NAMASSTE. II

Spin dynamics vs temperature (data storage)

- [DyNITpPy]2: DyNIT units coupled by small (bias) interaction (tunneling in zero field reduced, slow relaxation favoured), MUSR+NMR
- [Dy(18-C-6)(1-AdO)2][I3] : a system based on a single Ln ion
 BUT with a higher barrier, MUSR+NMR
- Very low-frequency (v < 5 MHz) spin dynamics by NMR-FFC, of

diluted systems TbSQ, Tb-trp, DySQ, Dy-trp

Fig. 1 Schematic view of the $[DyNITpPy]_2$ structure along the crystallographic *c* axis. Fluorine and hydrogen atoms are not shown for the sake of clarity. Dotted lines highlight Dy(III) coordination bonds.

A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium-nitronyl-nitroxide radical complex \dagger

Giordano Poneti," Kevin Bernot," Lapo Bogani," Andrea Caneschi," Roberta Sessoli," Wolfgang Wernsdorfer^c and Dante Gatteschi^a

Chem. Commun., 2007, 1807-1809 | 1807

Bis-Alkoxide Dysprosium(III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier

Adv. Sci. 2024, 11, 2308548

Wen-Jie Xu, Qian-Cheng Luo, Zi-Han Li, Yuan-Qi Zhai, and Yan-Zhen Zheng*

Tentative 3-yrs tasks

Synthesis of SMM for sensing	1-24	
Synthesis of rare-earth compounds	1-24	
NMR experiments with impinging β and/or γ		
SQUID exp.s with impinging β and/or γ	3-36	
CW/pulsed EPR exp.s with impinging β and/or γ	6-36	
MUSR exp.s with impinging α , β and/or γ	12-36	
MUSR exp.s with ac+DC fields applied, $B_{ac} \& B^{DC}$ not parallel to c	12-36	
SQUID exp.s with ac+DC fields applied, $B_{ac} \& B^{DC}$ not parallel to c	6-36	
MUSR+NMR on DyNIT units coupled by small (bias) interaction	12-36	
MUSR+NMR+magnetometry on high-barrier [Ln(18-C-6)(1-AdO)2][I3]		
NMR-FFC of diluted systems TbSQ, Tb-trp, DySQ, Dy-trp	3-28	

Tentative 3-yrs budget Pavia

Anno	Capitolo	kEuro	Motivazione
2025	Instrumentation Consumables Missions	7 20 5	High precision Gaussmeter Cryogenic gases and He/N2 liquid, spare electronics, emitting electrodes Collaboration meetings, MUSR experiments, outreach
2026	Consumables Missions	20 5	Cryogenic gases and He/N2 liquid, spare electronics, emitting electrodes Collaboration meetings, MUSR experiments, outreach
2027	Consumables Missions	20 5	Cryogenic gases and He/N2 liquid, spare electronics, emitting electrodes Collaboration meetings, MUSR experiments, outreach

Other Units (2025)

Bologna (1 FTE), MUSRSamuele Sanna, PA UNIBO , RL0.6Matteo Casadei, postdoc UNIBO0.2Muhammad Maikudi Isah, postdoc UNIBO0.2

Firenze (1.1 FTE), ac/DC SQUID, EPR, pulsed EPR

Barbagli Giuseppe, Ric. INFN	0.1
Celardo Giuseppe Luca, PA UNIFI	0.1
Cini Alberto, postdoc UNIFI	0
Fittipaldi Maria, PA UNIFI	0.4
Latino Giuseppe, PA UNIFI, RL	0.3
Paoletti Simone, Primo Ric. INFN	0.1
Poneti Giordano, RTD-B UNITUS	0.1
Sorace Lorenzo, PA UNIFI	0

Milano (1.1 FTE), MUSR and low-v NMR

Paolo Arosio, PA UNIMI, RL	0.6
Francesco Orsini, PA UNIMI	0.4
Ivan Veronese, PA UNIMI	0.1

Tentative 3-yrs budget, other Units

Bologna	Capitolo	kEuro	Motivazione
2025	Instrumentation	3	Computer dedicated to MUSR data analysis
	Missions	5	Collaboration meetings/measurements, MUSR experiments, outreach
2026	Missions	5	Collaboration meetings/measurements, MUSR experiments, outreach
2027	Missions	5	Collaboration meetings/measurements, MUSR experiments, outreach
Firenze	Capitolo	kEuro	Motivazione
2025	Consumables	17	Liquid helium, reagents, glasses, solvents, spare electronics
	Maintenance	1.5	Instrumentation maintenance
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach
2026	Consumables	17	Liquid helium, reagents, glasses, solvents, spare electronics
	Maintenance	1.5	Instrumentation maintenance
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach
2027	Consumables	17	Liquid helium, reagents, glasses, solvents, spare electronics
	Maintenance	1.5	Instrumentation maintenance
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach
Milano	Capitolo	kEuro	Motivazione
2025	Consumables	2.5	Cooling liquids (Galden) and spare electronics and glasses
	Instrumentation	2	Gaussmeter + dedicated special oscilloscope for FFC-NMR
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach
2026	Consumables	2.5	Cooling liquids (Galden) and spare electronics and glasses
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach
2027	Consumables	2.5	Cooling liquids (Galden) and spare electronics and glasses
	Missions	2	Collaboration meetings/measurements, MUSR experiments, outreach