LHCb a beautiful journey

Consiglio di sezione – INFN Pisa, 25/06/2024 Elena Graverini

The LHCb experiment at LHC

Elena Graverini (Uni Pisa + INFN)

The LHCb experiment at LHC

- 1050 authors from 99 institutes in 23 countries
- on CERN's LHC, that collides protons
 - each proton carries the energy of a mosquito buzzying around at 20 cm/s
 - (a mosquito contains \sim 1'000'000'000'000 billions protons)

🕹 Tu

calcola il numero di protoni in una zanzara

🤰 Copilot

Generazione di risposte per te in corso...

Le zanzare sono piccoli insetti fastidiosi, ma la loro vita è breve e intensa. In media, una zanzara della specie più comune, la *Culax Pipiens*, vive tra **i 12 e i 132 giorni** ¹. Ora, per calcolare il numero di protoni in una zanzara, dobbiamo considerare il suo numero atomico. L'elemento boro (B), ad esempio, ha un numero atomico pari a 5, il che significa che ha **5 protoni** ². Quindi, possiamo dire che una zanzara ha lo stesso numero di protoni del boro. Ad

• from the *pp* collisions a heap of particles emerge, that are not normally present in nature

dark matter?

where is antimatter?

Elena Graverini (Uni Pisa + INFN)

A "flavourful" take

The term *flavor* was first used in particle physics in the context of the quark model of hadrons. It was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins ice-cream store in Pasadena. Just as ice cream has both color and flavor so do quarks (Fritzsch, 2008).

[RMP 81 (2009) 1887]

What is flavour? Why is it relevant?

Fundamental particles of the Standard Model

CPEPphysics.org

Flavour and new particles

- in the Standard Model, certain decays are prohibited: changing flavour without changing charge
- we know very well that laws can be circumvented if loopholes are found
- particles know, too, so they decay (much more rarely) via quantum loops
- new particles can hide in there
- we cannot observe them, but we can measure their effects

Flavour and matter/antimatter (a)symmetry

- *CP* symmetry transforms matter ↔ antimatter
- if less than 3 families → no known source of CP violation
 - same amount of matter and antimatter \rightarrow annihilation \rightarrow we could not exist!
- we have 3 families! (could there be more?)
 - amount of CP violation measured in SM too small by several orders of magnitude to explain why we exist. Needs investigation.

Brief history of flavour

- **1953** discovery of "strange" particles: produced via strong force, decay by weak force
- **1956** weak interactions violate *P*: strange particles (*K*) decay to both $P = \pm 1$ states
- **1963** $\mathcal{B}(K \to \ell \nu) \ll \mathcal{B}(\pi \to \ell \nu)$: Cabibbo introduces mixing angle θ_C , weak quark couplings are not universal
- **1964** decays of neutral kaons violate *CP* symmetry: *K* mixing. Birth of the quark model. **1970** GIM mechanism: 4th quark "charm" (*c*) explains "strangeness" of weak interactions **1972** CKM: hey, by adding another two quarks (beauty *b*, top *t*) we get CP violation! **1974** discovery of charm quark. J/ψ gets two names due to scientific competition **1977** discovery of beauty quark in $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances **1987** evidence of $B^0 - \overline{B}^0$ mixing
- **1999** direct CP violation in *K* decays
- **2001** CP violation in *B* mesons

Towards LHC

- *b* physics dominated by e^+e^- experiments
- some measurements at fixed-target experiments
- too few *b*'s, too much background
- **1993**: 3 beauty experiments proposed for LHC, main goal: measure CPV
- COBEXpp collisions, forward directionLHBextraction of p to fixed targetGAJETgas as fixed target
- CERN: merge the 3 collaborations and propose new collider-mode experiment → LHCb (1994)

The LHCb experiment

Elena Graverini (Uni Pisa + INFN)

1.1

The LHCb experiment

--- photon electron muon

magnet

magnet

Elena Graverini (Uni Pisa + INFN)

* *

Why that shape?

- LHCb different from other collider experiments
- the probability of producing $b\bar{b}$ pairs in pp collisions has a peak at small angles!
- detectors can be built more efficiently
 - e.g. the two RICH detectors (particle identification)
- detector organised in "planes" easier to navigate for installation / maintenance

Standard collider experiment	LHCP
beam	

Status of LHCb

- many changes to design introduced during construction
- smoothly ran at higher-than-nominal pp rate 2011–2018
- 2019 upgrade: replace all tracking detectors, replace all readout...
- ...drop hardware "trigger": this means that we analyse 5 TB/s of data in real time, finally saving to disk 10 GB/s
- physics programme ranges wide beyond original goals
 - set new standards in beauty and charm physics
 - spectroscopy (discovered 67 new hadrons!)
 - electroweak, heavy ions, fixed target...
- 738 papers on the arXiv, of which 720 published in peer-review journals
- here: focus on activities undertaken by Pisa group

LHCb in Pisa

Elena Graverini (Uni Pisa + INFN)

LHCb – a beautiful journey

Asymmetries

Tau Rare decays Simulation Luminosity

Firmware

Charm

rigg

Pisa

Real-time analysis

LHCD

LHCb Pisa group

- largest LHCb group in Italy. Comprises people from INFN, SNS, Uni Pisa, Uni Siena
- plethora of activities (including many PhD and MSc theses)
- **Real-time Analysis (RTA):** i.e. striving to minimize the latency between data acquisition and analysis, vital for high luminosity operation
 - here belongs the **RETINA** project
- Simulation: speeding up Monte Carlo simulation of complex detectors (Calo)
- **Data analysis:** leading expertise in charm physics and CP violation, and the search for new physics in rare and ultra-rare decays
- **Interaction region**: study and real-time monitoring of vital collider parameters: luminosity, relative position between detector and lumi region
- here, can only show you small subset of activities!

New physics in rare decays

Elena Graverini (Uni Pisa + INFN)

LHCb – a beautiful journey

Vedo-non-vedo

- look for new physics where it is easier to hide it: rare stuff
 - Flavour Changing Neutral Currents suppressed in SM \Longrightarrow NP contrib. can be sizeable
 - effective indirect search for new particles
 - not limited by collision energy
- we only **see** the final-state particles
- but we can infer about decay mediators
 - language: Effective Field Theory \longrightarrow measurable coefficients

Vedo-non-vedo

- look for new physics where it is easier to hide it: rare stuff
 - Flavour Changing Neutral Currents suppressed in SM \Longrightarrow NP contrib. can be sizeable
 - effective indirect search for new particles
 - not limited by collision energy
- we only **see** the final-state particles
- but we can infer about decay mediators
 - language: Effective Field Theory \longrightarrow measurable coefficients

Vedo-non-vedo

- look for new physics where it is easier to hide it: rare stuff
 - Flavour Changing Neutral Currents suppressed in SM \Longrightarrow NP contrib. can be sizeable
 - effective indirect search for new particles
 - not limited by collision energy
- we only **see** the final-state particles
- but we can infer about decay mediators
 - language: Effective Field Theory \longrightarrow measurable coefficients

$B_s ightarrow \mu^+ \mu^-$

- $b \rightarrow s\ell\ell$ at the quark level (FCNC \longrightarrow rare)
- $B_{(s)} \rightarrow \mu^+ \mu^-$ even rarer, due to helicity
- SM calculations very precise, indicating B_s decays to $\mu^+\mu^- \sim$ 3.66 times every billion decays
 - any deviation would signal new physics!
- first seen in 2015 in LHCb+CMS data
- measured with whole dataset, compatible with

Why have we all gone nuts over $b \rightarrow s\ell\ell$

 $b \rightarrow s\ell\ell$ can also have a hadron in the final state. Over the past decade, *tensions* with respect to the SM predictions accumulated in different observables:

1. Branching Fractions

 $B \to K^{(*)}\mu^+\mu^-, B_s \to \phi\mu^+\mu^-, \Lambda_b \to \Lambda\mu^+\mu^-, ...$ suffer from uncertainties related to the hadronic matrix element

2. Angular observables

 $B \to K^{(*)}\mu^+\mu^-$, $\Lambda_b \to \Lambda\mu^+\mu^-$, ... profit from cancellation of most form factors

3. Ratios of branching fractions involving μ/e $B^0 \rightarrow K^{*0}\ell^+\ell^-, B^+ \rightarrow K^+\ell^+\ell^-, ...$ all theoretical uncertaities cancel

Electron vs. muons

• in the SM, decays to all lepton generations are equally probable

•
$$m_{\ell} \ll m_B \Longrightarrow R_K^{\text{SM}} = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} \Big|_{[q^2_{\min}, q^2_{\max}]} = \frac{1 \pm \mathcal{O}(10^{-2})_{(\text{QED})} \pm \mathcal{O}(10^{-4})_{(\text{QCD})}}{_{[J\text{HEP 12 (2007) 040]}} [EPJC 76 (2016) 440]}$$

• electrons are the experimental limiting factor: ECAL trigger thresholds, resolution

"Flavour anomalies"

Elena Graverini (Uni Pisa + INFN)

What now?

- culprit: misunderstanding of doubly-misidentified backgrounds
 - e.g. $B \to KKK$ posing as $B \to Kee$
- removes the "cleanest" anomaly from the pool, but the remaining ones have a 4-5 σ tension with the SM

- why are we not claiming new physics?
- $b \rightarrow sc\bar{c}, c\bar{c} \rightarrow \mu\mu$ background difficult to calculate, needs help from measurements

Elena Graverini (Uni Pisa + INFN)

• quarks do not exist unbound

- study various hadron decays

Elena Graverini (Uni Pisa + INFN)

- quarks do not exist unbound
 - study various hadron decays
- theoretical descriptions grow complex

- quarks do not exist unbound
 - study various hadron decays
- theoretical descriptions grow complex

- quarks do not exist unbound
 - study various hadron decays
- theoretical descriptions grow complex
- → sum all decays together: easier theoretical treatment
 - extract maximum of information from **largest** data sample available

algorithm for inclusive selection of $B \rightarrow X_s \ell^+ \ell^-$ under development

Charm and CPV

Elena Graverini (Uni Pisa + INFN)

LHCb – a beautiful journey

CP violation in charm

- CPV is observed in strange and beauty systems, but...
- $D^0 \overline{D}^0$ is the only neutral system with up-type quarks!
- there could be **new** sources of CPV which only act on up-type quarks
- SM prediction $\mathcal{O}(10^{-4} 10^{-3})$. LHCb: $\Delta a^d_{CP} = (-15.7 \pm 2.9) \times 10^{-4}$ [PRD75, 036008][JHEP 12(2019)104]
- how to measure it?

Measuring CPV: $D^0 \rightarrow K^+K^-$

- measure relative difference between yields of $D^0 \to K^+ K^-$ and $\bar{D}^0 \to K^+ K^-$
- how to I know if it was a D^0 or $\overline{D}{}^0$? \longrightarrow take it from $D^{*+} \rightarrow D^0 \pi^+$
- are D^{*+} and π^+ sufficiently symmetric (production, detection)? \longrightarrow no

Measuring CPV: $D^0 \rightarrow K^+K^-$

- measure relative difference between yields of $D^0 \to K^+ K^-$ and $\bar{D}^0 \to K^+ K^-$
- how to I know if it was a D^0 or $\overline{D}{}^0$? \longrightarrow take it from $D^{*+} \rightarrow D^0 \pi^+$
- are D^{*+} and π^+ sufficiently symmetric (production, detection)? \longrightarrow no
- subtract asymmetries measured in control channels such as $D^{*+} \rightarrow D^0 (\rightarrow \bar{K}^0 \pi^+ \pi^-) \pi^+$

Measuring CPV: $D^0 \rightarrow K^+K^-$

- measure relative difference between yields of $D^0 \to K^+ K^-$ and $\bar{D}^0 \to K^+ K^-$
- how to I know if it was a D^0 or $\overline{D}{}^0$? \longrightarrow take it from $D^{*+} \rightarrow D^0 \pi^+$
- are D^{*+} and π^+ sufficiently symmetric (production, detection)? \longrightarrow no
- subtract asymmetries measured in control channels such as $D^{*+} \rightarrow D^0 (\rightarrow \bar{K}^0 \pi^+ \pi^-) \pi^+$
- are \bar{K}^0 and $\pi^+\pi^-$ sufficiently symmetric?

Measuring CPV: $D^0 \rightarrow K^+K^-$

- measure relative difference between yields of $D^0 \to K^+ K^-$ and $\bar{D}^0 \to K^+ K^-$
- how to I know if it was a D^0 or $\overline{D}{}^0$? \longrightarrow take it from $D^{*+} \rightarrow D^0 \pi^+$
- are D^{*+} and π^+ sufficiently symmetric (production, detection)? \longrightarrow no
- subtract asymmetries measured in control channels such as $D^{*+} \rightarrow D^0 (\rightarrow \bar{K}^0 \pi^+ \pi^-) \pi^+$
- are \bar{K}^0 and $\pi^+\pi^-$ sufficiently symmetric? no but can be modeled/controlled :)

Measuring mixing and CPV: $D^0 \rightarrow K\pi$

• measure time-dependent "wrong sign" to "right sign" decay yield R(t)

6 parameters of interest:
$$R_{K\pi}$$
, mixing & CPV parameters.
 $R_{ty}^{\pm} \equiv \left[R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) \langle T \rangle_{ty}^{\pm} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T^2 \rangle_{ty}^{\pm} \right] \times (1 \pm 2A_{ty} - C) + D \longrightarrow doubly mis-ID$
 $\langle T \rangle_{ty}^{\pm} \equiv (\langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}) \cdot S$
decay-time bias $m(D^0)/\tau(D^0)$
 $ext. input$
 $R_{ty}^{\pm} = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv (\langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}) \cdot S$
 $\langle T \rangle_{ty}^{\pm} \equiv (\langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}) \cdot S$
 $\langle T \rangle_{ty}^{\pm} \equiv (\langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}) \cdot S$
 $\langle T \rangle_{ty}^{\pm} \equiv (\langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}) \cdot S$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} \equiv \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \langle T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}$
 $\langle T \rangle_{ty}^{\pm} = \langle t \rangle_{ty}^{\pm} - \langle \delta T \rangle_{ty}^{\pm}$

Measuring mixing and CPV: $D^0 \rightarrow K\pi$

What about neutral kaons?

- Run 1-2: no efficient selections!
- add new "trigger" line for Run 3 for K_s : first look at $D^0 \to K_s K_s$
 - **-** × **4.4** rate
 - resolution on CP parameters: $\sigma(a_{CP}) = 1.2\% \longrightarrow 0.6\%!$

Real time analysis and luminosity

Elena Graverini (Uni Pisa + INFN)

LHCb – a beautiful journey

LHCb data processing model

Elena Graverini (Uni Pisa + INFN)

²⁶/34

LHCb data processing model

Elena Graverini (Uni Pisa + INFN)

⁶/₃₄

Primitives

- raw data \longrightarrow primitives \longrightarrow higher level objects
- push data processing before event building: pre-reconstruct primitives with local info
- replace raw data with primitives: save HLT1 resources
- reduce input data flow + accelerate HLT1 and HLT2 reconstruction
- however: building primitives must happen at 30 MHz (pp rate)
- embed calculation in detector readout or (if complex) external boards (FPGA)
- \rightarrow LHCb-Pisa: leading development of Artificial RETINA since 10 years
 - fast and scalable pattern-matching method inspired by vision processing in human brain

Embedded clustering

- the LHCb VErtex LOcator is our detector closest to the pp collision (~ 2 mm)
- first successful application of RETINA idea: raw hits \longrightarrow positions of clusters
- after careful testing, now implemented and fully adopted in LHCb Run 3
- reduce input bandwidth by 15%, saving 12% HLT1 resources and using only $1/50^{\rm th}$ of electrical power

RETINA demonstrator

- pattern recognition embedded in detector readout: Velo pixels → array of aligned hits → tracks
- enhancement developed for high-luminosity LHC
 - can already use in Run 4!
- demonstrator installed and tested with live data at LHCb
- smooth reconstruction of tracks in one VELO quadrant

Downstream tracking

- track segments from T1,2,3 currently used as seed for HLT1 track reconstruction
- replace with two-step RETINA: *xy* then *uv* layers
- seeding (1.5 μ s) \rightarrow primitive refitting (0.06 μ s). HLT1 throughput increased by **33%**!
- Run 4: install in external servers. Run 5: 100 new readout boards
- physics: neutral kaons ($D^0 \rightarrow K_s K_s, K_s \rightarrow \mu \mu$), search for long lived particles

More complex quantities!

- embedded cluster finding made 10¹¹ hits/s available
- can surely do something useful with these?
- precision monitoring of interaction region parameters, in real time
- **luminosity** measures how many *pp* collisions LHC delivers
- can also monitor the position where the beams overlap, and that of the VELO modules

Inner Counters

Outer Counters

Instantaneous luminosity during vdM scan

Where are my collisions?

Measurements agree very well with expectations!

Elena Graverini (Uni Pisa + INFN)

LHCb – a beautiful journey

Conclusions

- pictures in previous slides explain why I chose this title...
- LHCb is a peculiar experiment at LHC. It looks forward, and it looks at decays of heavy hadrons
- flavour physics, studied at LHCb, can shed light on mysteries still unexplained
 - why is there so little antimatter?
 - what is dark matter made of?
 - why are flavour parameters so varied?
- is there a more fundamental theory?
- to try and answer these questions, we look for ultra-rare decays ($< 10^{-9}$), strive to perform super-precise measurements, and face extreme computing challenges
- LHCb updated in 2019–2021. Finally, new detector commissioned and taking data!