

Containers Orchestration

Lisa Zangrando
(INFN PD)

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Outline

● Introduction of the problem

● Containers Orchestration
● Overview of the major solutions

● Wrap-up

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Introduction

● We explored how containers help us to easily create applications that are – as the name says – self-contained.

● We discussed docker applications and explored a bit the docker-compose

● What we need then? we’d explore how to effectively orchestrate many containers across distributed hosts

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Orchestration

● Orchestration refers to the automated arrangement, coordination, and management of complex software
systems, ensuring that all components work together smoothly.

● Key Functions:
● Automated Deployment: ensures that containerized applications are deployed consistently across multiple

environments.
● Scaling: automatically adjusts the number of running application instances based on resource demand or

defined policies.
● Load Balancing: distributes network traffic efficiently across multiple tasks to ensure high availability and

performance.
● Self-Healing: monitors and replaces failed instances, ensuring that applications continue running as

expected.
● Service Discovery: helps identify and connect services within the cluster without manual intervention.

● Why it matters:
● simplifies management of distributed applications.
● enhances reliability, scalability, and fault tolerance in complex systems.
● reduces manual intervention, allowing for easier application lifecycle management.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Three major solutions

Docker swarm Apache Mesos Kubernetes

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

Nearly EOL by now

mailto:lisa.zangrando@pd.infn.it

Docker swarm

● Docker Swarm is Docker’s native clustering and orchestration tool for managing a cluster of Docker nodes.

● It is straightforward to install, lightweight and easy to use

● It is embedded in Docker Engine

● It does not require configuration changes if your system is already running inside Docker

● it works seamlessly with existing Docker tools such as Docker Compose.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Docker swarm: key features

● Decentralized design: this means that any node in a Docker Swarm can assume any role at runtime.

● Clustering: groups multiple Docker engines into a single, virtual Docker engine.

● High Availability: fault tolerance through manager nodes and replication of services

● Service Discovery: automatically assigns a DNS name to services and handles service discovery within the
cluster.

● Load Balancing: distributes network traffic across containers and nodes to ensure efficient resource
utilization.

● Scaling: allows easy scaling of services up or down by adding or removing container instances.

● Rolling Updates: facilitates updating services without downtime through rolling updates and rollbacks.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Docker swarm: architecture

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

Manager Nodes: Coordinate the cluster and
make scheduling decisions. They can also
handle requests from users.

Worker Nodes: Execute tasks based on the
manager’s instructions. They do not make
scheduling decisions.

Overlay Network: A network layer that allows
containers across different hosts to
communicate securely.

A given Docker host can be a manager, a
worker, or perform both roles

mailto:lisa.zangrando@pd.infn.it

Docker swarm: tutorial

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

https://docs.docker.com/engine/swarm/swarm-tutorial/

The tutorial guides you through:

● Initializing a cluster of Docker Engines in swarm mode

● Adding nodes to the swarm

● Deploying application services to the swarm

● Managing the swarm once you have everything running

mailto:lisa.zangrando@pd.infn.it
https://docs.docker.com/engine/swarm/swarm-tutorial/

Kubernetes

● Kubernetes is an open-source platform for automating the deployment, scaling, and operation of containerized
applications.

● Developed by Google: Kubernetes originated as an internal project at Google called Borg, which Google
used to manage its own infrastructure.

● Open-Source: In 2014, Google open-sourced Kubernetes, combining its years of experience managing
containers with contributions from the wider community.

● Maintained by CNCF: The Cloud Native Computing Foundation (CNCF) now maintains Kubernetes,
supporting its growth and development in the cloud-native ecosystem.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Why Kubernetes?

● Scalability & Reliability

● seamlessly scales applications across thousands of servers.

● ensures high availability and automatic load balancing.

● Automation of operations

● automatically deploys, scales, and repairs applications.

● handles tasks like rolling updates, resource management, and self-healing.

● Portability across environments

● supports multi-cloud and hybrid cloud deployments.

● runs uniformly on public clouds (AWS, Azure, GCP) or on-premises.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Why Kubernetes? (cont.)

● Cost efficiency

● optimizes resource usage (CPU, memory) and reduces overhead.

● deploys multiple apps on fewer resources, reducing costs.

● Vast ecosystem & Community support

● backed by a large, active community and leading tech companies.

● integrates with tools for monitoring, automation, security, and storage.

● Continuous Innovation

● new features introduced regularly, driving efficiency and security.

● enables businesses to innovate without compromising service stability.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes: key features
● Automated Rollouts & Rollbacks: safely deploy and update applications with zero downtime.

● Self-Healing: automatically restarts failed containers, replaces and reschedules Pods.

● Horizontal Scaling: automatically scales applications based on resource usage or custom metrics.

● Load Balancing: distributes incoming traffic evenly across Pods for high availability.

● Storage Orchestration: manages local or external storage volumes (like AWS EBS or NFS)

● Automatic Bin Packing: automatically places containers based on their resource requirements and other
constraints

● IPv4/IPv6 Dual-Stack:allocation of IPv4 and IPv6 addresses to Pods and Services

● Batch execution: Kubernetes can manage your batch and CI workloads, replacing containers that fail, if
desired.

● Designed for extensibility: add features to your Kubernetes cluster without changing upstream source code.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes architecture

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes architecture

● Control Plane (master node): manages the entire cluster and coordinates its activities.

● API Server: front end of the control plane; exposes the Kubernetes API

● Scheduler: determines which nodes run new Pods based on resource requirements and policies.

● Controller Manager: ensures the cluster is running the desired state by managing controllers like the ReplicaSet,
Deployment, etc.

● Etcd (key-value store): stores all cluster data, including configuration and status information, as a key-value store.

● Data Plane (worker nodes): run the containerized applications (Pods).

● Kubelet: ensures that containers are running in Pods by interacting with the container runtime

● Container Runtime: software that runs and manages containers (e.g., Docker, containerd).

● Kube-proxy: manages network communication between Pods and services, handling routing and load balancing.

● NOTE: In Kubernetes, a node is the operational unit that runs your workloads. It may be a virtual or physical machine, depending on your cluster’s configuration.
Each node is supervised by the control plane and contains essential services for running pods, the smallest deployable units in Kubernetes.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes objects and reconciliation

● Abstractions in Kubernetes: Kubernetes operates using a set of abstractions that define the state of the
system

● Kubernetes Objects:

● definition: persistent entities representing the desired state of the system.

● purpose: manage resources declaratively (what should happen, not how).

● Components:

● specification (desired state)

● status (current state)

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes objects and reconciliation (cont.)

● Why objects matter?

● simplifies management of complex resources.

● allows focus on defining desired outcomes.

● automates tasks like scaling, configuration, and resource allocation.

● Reconciliation process:

● ensures the current state matches the desired state.

● controllers monitor objects, detect discrepancies, and fix issues.

● continuous process: auto-corrects application failures, ensures resilience.

● Declarative & Resilient system:

● define "what" should happen; Kubernetes ensures it.

● self-healing and scalable infrastructure without manual intervention.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes objects
$ kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
endpoints ep v1 true Endpoints
events ev v1 true Event
limitranges limits v1 true LimitRange
namespaces ns v1 false Namespace
nodes no v1 false Node
persistentvolumeclaims pvc v1 true PersistentVolumeClaim
persistentvolumes pv v1 false PersistentVolume
pods po v1 true Pod
podtemplates v1 true PodTemplate
replicationcontrollers rc v1 true ReplicationController
resourcequotas quota v1 true ResourceQuota
secrets v1 true Secret
serviceaccounts sa v1 true ServiceAccount
services svc v1 true Service
mutatingwebhookconfigurations admissionregistration.k8s.io/v1 false MutatingWebhookConfiguration
validatingadmissionpolicies admissionregistration.k8s.io/v1 false ValidatingAdmissionPolicy
validatingadmissionpolicybindings admissionregistration.k8s.io/v1 false ValidatingAdmissionPolicyBinding
validatingwebhookconfigurations admissionregistration.k8s.io/v1 false ValidatingWebhookConfiguration
customresourcedefinitions crd,crds apiextensions.k8s.io/v1 false CustomResourceDefinition
apiservices apiregistration.k8s.io/v1 false APIService
controllerrevisions apps/v1 true ControllerRevision
daemonsets ds apps/v1 true DaemonSet
deployments deploy apps/v1 true Deployment
replicasets rs apps/v1 true ReplicaSet
statefulsets sts apps/v1 true StatefulSet
selfsubjectreviews authentication.k8s.io/v1 false SelfSubjectReview
tokenreviews authentication.k8s.io/v1 false TokenReview

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes objects (cont.)

localsubjectaccessreviews authorization.k8s.io/v1 true LocalSubjectAccessReview
selfsubjectaccessreviews authorization.k8s.io/v1 false SelfSubjectAccessReview
selfsubjectrulesreviews authorization.k8s.io/v1 false SelfSubjectRulesReview
subjectaccessreviews authorization.k8s.io/v1 false SubjectAccessReview
horizontalpodautoscalers hpa autoscaling/v2 true HorizontalPodAutoscaler
cronjobs cj batch/v1 true CronJob
jobs batch/v1 true Job
certificatesigningrequests csr certificates.k8s.io/v1 false CertificateSigningRequest
leases coordination.k8s.io/v1 true Lease
endpointslices discovery.k8s.io/v1 true EndpointSlice
events ev events.k8s.io/v1 true Event
flowschemas flowcontrol.apiserver.k8s.io/v1 false FlowSchema
prioritylevelconfigurations flowcontrol.apiserver.k8s.io/v1 false PriorityLevelConfiguration
ingressclasses networking.k8s.io/v1 false IngressClass
ingresses ing networking.k8s.io/v1 true Ingress
networkpolicies netpol networking.k8s.io/v1 true NetworkPolicy
runtimeclasses node.k8s.io/v1 false RuntimeClass
poddisruptionbudgets pdb policy/v1 true PodDisruptionBudget
clusterrolebindings rbac.authorization.k8s.io/v1 false ClusterRoleBinding
clusterroles rbac.authorization.k8s.io/v1 false ClusterRole
rolebindings rbac.authorization.k8s.io/v1 true RoleBinding
roles rbac.authorization.k8s.io/v1 true Role
priorityclasses pc scheduling.k8s.io/v1 false PriorityClass
csidrivers storage.k8s.io/v1 false CSIDriver
csinodes storage.k8s.io/v1 false CSINode
csistoragecapacities storage.k8s.io/v1 true CSIStorageCapacity
storageclasses sc storage.k8s.io/v1 false StorageClass
volumeattachments storage.k8s.io/v1 false VolumeAttachment

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Kubernetes objects: examples

Today we will focus on:

● Pod
● Deployment
● Service
● Volume
● Namespaces

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Pod: the basic deployable unit in Kubernetes

A Pod is the smallest and most basic deployable object in
Kubernetes.

It represents a single instance of a running process in your cluster.

Pods can contain one or more containers, which are tightly coupled
and share the same network and storage resources.

In most cases, Pods are used to run a single container, but for
applications that need multiple containers working together (e.g., a
web server with a sidecar container for logging), they can be
grouped into the same Pod.

Pods have an ephemeral nature: if they fail, they can be replaced
with a new instance, but the Pod itself is never restarted.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Pod: examples

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

apiVersion: v1 # Specifies the version of the Kubernetes API used for the object
kind: Pod # Defines the type of Kubernetes object, in this case, a Pod
metadata:
 name: nginx # The name of the Pod, which must be unique within the namespace
 labels:
 app: nginx # Labels used to categorize and organize Pods
spec:
 containers: # Defines the containers that will run within the Pod
 - name: nginx # The name of the container, used within the Pod for identification
 image: nginx:latest # Specifies the container image to use
 resources:
 requests: # Minimum resources the container is guaranteed to have
 memory: "128Mi" # Requests 128 MiB of memory
 cpu: "250m" # Requests 250 milliCPU (0.25 of a CPU core)
 limits: # Maximum resources the container is allowed to use
 memory: "256Mi" # Limits memory usage to 256 MiB
 cpu: "500m" # Limits CPU usage to 500 milliCPU (0.5 of a CPU core)
 ports:
 - containerPort: 80 # Exposes port 80 inside the container,

mailto:lisa.zangrando@pd.infn.it

Deployment: managing Applications and Scaling

A Deployment is a higher-level abstraction that manages a group
of Pods and ensures that the right number of them are running at
any given time.

It provides declarative updates, allowing you to define the
desired state of your application (like how many replicas you
need, or what version to run), and Kubernetes handles the rest.

Deployments are ideal for stateless applications where you want
to scale up or down or roll out updates. If anything happens to
the Pods (like failures), the Deployment controller automatically
replaces them, ensuring the application remains available and
healthy.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Deployment: example

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

apiVersion: apps/v1 # Specifies the version of the Kubernetes API for deployments
kind: Deployment # Defines the type of Kubernetes object: Deployment
metadata:
 name: nginx-deployment # The name of the Deployment object
 labels:
 app: nginx # Labels used to categorize and identify the Deployment
spec:
 replicas: 3 # Specifies the desired number of Pod replicas (3 Pods)
 selector:
 matchLabels:
 app: nginx # Defines a label selector
 template:
 metadata:
 labels:
 app: nginx # Labels for the Pods created by the Deployment
 spec:
 containers:
 - name: nginx # The name of the container running in each Pod
 image: nginx:latest # Specifies the container image to use
 ports:
 - containerPort: 80 # Exposes port 80 within the container for HTTP traffic

mailto:lisa.zangrando@pd.infn.it

Service: ensuring stable access to Pods

A Service in Kubernetes acts as a stable entry point for a
group of Pods. Since Pods are ephemeral and can change IP
addresses when they are recreated, a Service ensures that
you have a consistent way to reach the Pods, whether from
inside the cluster or externally.

Services distribute traffic to Pods using a built-in load
balancer, and they can operate in various modes, such as
ClusterIP (for internal communication), NodePort (for
external access), or LoadBalancer (for cloud providers).

The service ensures that applications remain accessible even
as Pods are dynamically created and destroyed.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Service: example

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

apiVersion: v1 # Specifies the version of the Kubernetes API
kind: Service # Defines the type of Kubernetes object, in this case, a Service
metadata:
 name: nginx-service # The name of the Service object
 labels:
 app: nginx # Labels used to identify the Service
spec:
 type: NodePort # The Service type; NodePort exposes the service on a static port
 selector:
 app: nginx # Defines a label selector that matches Pods
 ports:
 - port: 80 # The port that the Service exposes inside the cluster
 targetPort: 80 # The port on the Pod that the Service will forward traffic to
 nodePort: 30007 # The static port on the node where the service will be exposed
 # externally (in this case, port 30007 on each node in the cluster)

mailto:lisa.zangrando@pd.infn.it

Volume: persistent storage for containers

A Volume in Kubernetes provides storage that can be attached to a Pod.

Unlike container storage, which is temporary and lost when a container stops, Volumes persist data beyond the
lifecycle of a single container.

Kubernetes supports different types of volumes, including hostPath (using the node’s local storage),
PersistentVolume (abstracting storage from the infrastructure), and cloud-provider-specific volumes (e.g.,
AWS EBS, Google Cloud Disks).

Volumes are key for applications that require stable, long-term data storage.

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

Volume: example

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

apiVersion: v1
kind: Pod
metadata:
 name: nginx-volume
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /usr/share/nginx/html # Mounts a volume inside the container at this path
 name: hostpath-volume # Refers to the volume named 'hostpath-volume'
 volumes:
 - name: hostpath-volume # Defines a volume named 'hostpath-volume'
 hostPath:
 path: /mnt/data # The path on the host machine that is mounted into the container
 type: Directory # Specifies that the volume is a directory on the host filesystem

mailto:lisa.zangrando@pd.infn.it

Namespace: organizing and isolating resources

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

Namespaces provide a way to divide a single Kubernetes cluster into multiple virtual clusters.

They are especially useful in environments with many users or teams, helping to isolate resources and avoid
conflicts.

For example, different development teams can have their applications deployed in separate namespaces,
ensuring that resources like Pods, Services, and volumes are organized and managed independently.

Namespaces also allow for resource quotas and access control, giving teams better governance over what they
can use and access in the cluster.

mailto:lisa.zangrando@pd.infn.it

Kubernetes-as-a-Service

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

Deploying and managing a Kubernetes cluster is generally not trivial (that’s why Minikube was introduced), since
it requires effort and several skills.

It would be nice to automatize this part as well, and focus just on deploying our containers on a Kubernetes
cluster that somebody else instantiates for us.

Kubernetes-as-a-Service (KaaS) is a cloud-based solution that allows organizations to leverage the full power
of Kubernetes without the complexities of managing it themselves. Instead of setting up, configuring, and
maintaining your own Kubernetes clusters, you can use a managed service offered by cloud providers.

Popular KaaS providers:

● Google Kubernetes Engine (GKE)

● Amazon Elastic Kubernetes Service (EKS)

● Azure Kubernetes Service (AKS)

● INFN Cloud

Benefits of KaaS: it reduces operational overhead, ensures a high level of availability, and allows developers to
focus on building applications rather than managing infrastructure.

mailto:lisa.zangrando@pd.infn.it

Kubernetes vs Docker swarm

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

Kubernetes and Docker Swarm are designed to
manage and scale containerized applications,
they differ in architecture, complexity, and
feature sets.

Kubernetes: best for complex, large-scale
applications requiring advanced orchestration,
scalability, and high availability.

Docker Swarm: ideal for simpler, smaller
deployments, or teams looking for a fast, easy-
to-learn solution.

mailto:lisa.zangrando@pd.infn.it

lisa.zangrando@pd.infn.it Corso base su Docker 10-12/09/2024

mailto:lisa.zangrando@pd.infn.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

