
Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Networking for
Docker containers

Stefano Nicotri (INFN Bari)
nicotri@infn.it

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Outline

● Prelude: some basic facts about networking
● Networking in Docker containers
● Networking Drivers

○ bridge
○ overlay
○ ipvlan and macvlan
○ none
○ third-party

● Challenge

2

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Prelude: some basic facts about networking

3

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

IP address

An Internet Protocol address (IP address) is a numerical label such as 192.0.2.1 that
is connected to a computer network that uses the Internet Protocol for
communication.

An IP address serves two main functions: network interface identification, and
location addressing.

IP addresses are described as consisting of two groups of bits in the address: the
most significant bits are the network prefix, which identifies a whole network or
subnet, and the least significant set forms the host identifier, which specifies a
particular interface of a host on that network.

4

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

IP address

In the classful network architecture of IPv4, the three most significant bits of the
32-bit IP address define the size of the network prefix, and determine the network
class A, B, or C (here we ignore D and E classes, but they exist)

5

Class Most-significant bits Network prefix size (bits) Host identifier size (bits) Address range

A 0 8 24 0.0.0.0–127.255.255.255

B 10 16 16 128.0.0.0–191.255.255.255

C 110 24 8 192.0.0.0–223.255.255.255

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

IP address

In practice:

an IP address is a string in the form a.b.c.d where a,b,c,d are numbers between 0
and 255

example: 192.168.0.9

there are ~ 4 billion IP addresses (IPv4)

6

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Classless Inter-Domain Routing (CIDR) notation

CIDR notation is a compact representation of an IP address and its associated network
mask, which specifies an IP address, a slash ('/') character, and a decimal number, which is
the count of consecutive leading 1-bits (from left to right) in the network mask. Each 1-bit
denotes a bit of the address range which must remain identical to the given IP address.

The address may denote a specific interface address (including a host identifier, such as
10.0.0.1/8), or it may be the beginning address of an entire network (using a host identifier
of 0, as in 10.0.0.0/8 or its equivalent 10/8).

CIDR notation can even be used with no IP address at all, e.g. when referring to a /24 as a
generic description of an IPv4 network that has a 24-bit prefix and 8-bit host numbers.

7

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Classless Inter-Domain Routing (CIDR) notation

In practice:

in a a.b.c.d/x network you have 232-x addresses, starting from a.b.c.d

some examples:

1. 192.168.13.0/24 means 232-24 = 28 = 256 IPs, from 192.168.13.0 to 192.168.13.255

2. 192.168.13.5/32 means 232-32 = 20 = one IP

3. 10.0.0.0/8 means 232-8 = 224 = 16,777,216 IPs, from 10.0.0.0 to 10.255.255.255

4. 172.16.0.0/12 means 232-12 = 220 = 1,048,576 IPs, from 172.16.0.0 to 172.31.255.255

5. 192.168.0.0/16 means 232-16 = 216 = 65,536 IPs, from 192.168.0.0 to 192.168.255.255

8

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Private network

A private network is a computer network that uses a private address space of IP addresses.
These addresses are commonly used for local area networks (LANs)

Private network addresses are not allocated to any specific organization

IP packets originating from or addressed to a private IP address cannot be routed through
the public Internet

9

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Private network: IP addresses

10

The following IPv4 address ranges are reserved for private networks:

1. 10.0.0.0/8 means 232-8 = 224 = 16,777,216 IPs, from 10.0.0.0 to 10.255.255.255

2. 172.16.0.0/12 means 232-12 = 220 = 1,048,576 IPs, from 172.16.0.0 to 172.31.255.255

3. 192.168.0.0/16 means 232-16 = 216 = 65,536 IPs, from 192.168.0.0 to 192.168.255.255

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Networking in Docker containers

Some of the questions we want to answer here are:

how do I connect two containers running on my host?

how do I isolate my container?

how do I access a specific port?

how do I connect containers running on different hosts?

how do I connect an external (possibly non-containerized) service to my container?

11

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Networking in Docker containers

One powerful feature of Docker is its large variety of networking possibilities for
containers.

It is possible to connect containers together, or connect them to non-Docker
workloads, and services do not need to be aware that they are deployed on Docker,
or whether their peers are also Docker workloads or not.

The Docker networking system makes use of drivers, which provide different
functionalities

12

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Docker driver summary

User-defined bridge networks are best when you need multiple containers to communicate on the same
Docker host.

Host networks are best when the network stack should not be isolated from the Docker host, but you want
other aspects of the container to be isolated.

Overlay networks are best when you need containers running on different Docker hosts to communicate, or
when multiple applications work together using swarm services.

IPvlan networks give users total control over both IPv4 and IPv6 addressing. The VLAN driver builds on top
of that in giving operators complete control of layer 2 VLAN tagging and even IPvlan L3 routing

Macvlan networks are best when you are migrating from a VM setup or need your containers to look like
physical hosts on your network, each with a unique MAC address.

Third-party network plugins allow you to integrate Docker with specialized network stacks.

13

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Bridge networking driver

The bridge network driver is the default networking driver (the one you end up
using if you don’t specify any driver), and apply to containers running on the same
Docker daemon host

A bridge network uses a software bridge which allows containers connected to the
same bridge network to communicate, while providing isolation from containers
which are not connected to that bridge network

Docker automagically creates rules (e.g. via iptables) in the host machine to achieve
such result

14

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Bridge networking driver

When Docker is started, a default bridge network is created, called bridge, and all
containers connect to it unless otherwise specified. As a result, all such containers
can communicate with each other, but are not accessible from the outside

Each container has its own IP address on the bridge

It is also possible to create user-defined custom bridge networks, with interesting
features

15

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

User-defined bridge networks: automatic DNS resolution

Containers on the default bridge network can only access each other by IP
addresses

On a user-defined bridge network, containers can resolve each other by name or
alias.

For example, if you call your containers web and db, the web container can connect
to the db container at db, without needing to specify (or even know) its IP address

16

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

User-defined bridge networks: better isolation

Having all our containers attached to the default bridge network can be risky, as
unrelated stacks/services/containers are then able to communicate, and a
vulnerability in a service can affect unrelated services

Using a user-defined network provides a scoped network in which only containers
attached to that network are able to communicate among each other

17

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

User-defined bridge networks: attachability

It is possible to connect or disconnect containers from user-defined networks on
the fly (without stopping them), while this is not possible with the default bridge

To remove a container from the default bridge network, you need to stop the
container and recreate it with different network options

18

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Bridge network driver: usage

create the my-net bridge

19

$ docker network create my-net

$ docker create --name my-nginx --network my-net --publish 8080:80 nginx:latest

create a container attached to the my-net bridge, with a port exposed on the host

in this way, the port 8080 on the host will be mapped to the port 80 of the container
(the syntax is host_port:container_port), and it will be possible to access
the service exposed by the container directly from the host

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Bridge network driver: usage

20

$ docker network connect my-net my-container

$ docker network disconnect my-net my-container

connect a container (here called my-container) to the my-net bridge:

disconnect it:

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Host network driver

The host driver is mainly used for standalone containers

It removes network isolation between the container and the Docker host, and uses
the host’s networking directly.

If you run a container using this driver it does not get its own IP-address allocated

example: if you run a container which binds to port 80, the container’s application is
available on port 80 on the host’s IP address, without needing to publish any port

21

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Host network driver: use cases

Host mode networking can be useful to optimize performance, and in situations
where a container needs to handle a large range of ports, as it does not require
network address translation (NAT), and no proxy is created for each port.

The host networking driver only works on Linux, and is not supported on Mac
and/or Windows

22

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Host network driver: usage

The host network driver is used passing the --network host option when
creating a container

23

$ docker run --rm -d --network host --name my_nginx nginx

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Overlay network driver

Overlay networks connect multiple Docker daemons together

The overlay network driver creates a distributed network among multiple Docker
daemon hosts. This network sits on top of (overlays) the host-specific networks,
allowing containers connected to it (including swarm service containers) to
communicate

Docker transparently handles routing of each packet to and from the correct Docker
daemon host and the correct destination container.

24

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Overlay network driver: use cases

Overlay networks can be used to connect standalone containers living on different
Docker hosts or connect a swarm service and a standalone container

Overlay networks support encryption (not on Windows) for secure communications
among containers/swarms

25

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Overlay network driver: usage

26

create the my-overlay-net overlay network

$ docker network create -d overlay my-overlay-net

$ docker network create --driver overlay --attachable my-overlay-net

use the --attachable flag to make it usable to standalone containers

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Overlay network driver: encryption

27

It is possible to enforce data encryption adding the --opt encrypted flag when
creating the overlay network. This enables IPSEC encryption at the level of the vxlan.
This encryption imposes a non-negligible performance penalty, so you should test
this option before using it in production.

$ docker network create --opt encrypted --driver overlay --attachable my-net

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

ipvlan and macvlan network driver

the ipvlan network driver give users total control over IPv4 and IPv6 addressing

The VLAN driver builds on top of that in giving operators complete control of layer 2
VLAN tagging and even IPvlan L3 routing

Some applications (e.g. applications which monitor network traffic) expect to be
directly connected to the physical network instead. In this type of situation, you can
use the macvlan network driver to assign a MAC address to each container’s
virtual network interface, making it appear to be a physical network interface
directly connected to the physical network

Used for legacy applications or if you need your containers to look like physical
hosts on your network

28

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

“none” network driver

The last possibility is to disable networking features for the container altogether,
using the none network driver

This is usually used in conjunction with a custom network driver

29

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Third party network driver

As for storage drivers, multiple third-party plugins are available for networking as
well, to integrate Docker with specialized network stacks

30

Corso base su Docker 10-12/09/2024S. Nicotri (nicotri@infn.it)

Thank you for your attention

31

