

Testing flavour/modular symmetry theories in neutrino experiments

Monojit Ghosh

Ruđer Bosković Institute, Zagreb, Croatia

FLASY 2025 Rome, 30 June-4 July 2025

Outline

- Neutrino Experiments: with a focus on ESSnuSB Alekou, *et al.* [ESSnuSB] Eur. Phys. J. ST **231** (2022), 3779-3955
- Testing a set of flavour symmetry models
 Blennow, MG, Ohlsson and Titov, JHEP 07 (2020), 014
 Blennow, MG, Ohlsson and Titov, Phys. Rev. D 102 (2020), 115004
- Testing a set of modular symmetry models
 Mishra, Behera, Panda, MG and Mohanta, JHEP 09 (2023), 144

Neutrino Oscillation

- Oscillation from one flavour to another
- Because flavour states and mass states are not same

$$|\nu_{\alpha}\rangle = U_{\alpha i} |\nu_i\rangle$$

U is the PMNS matrix

• The transition probability is given by

 $P_{\alpha\beta} = |\langle v_{\beta} | v_{\alpha}(t) \rangle|^{2}$

3 mixing angles and 1 phase: $U^{3\nu} = R_{23}(\theta_{23}) R_{13}(\theta_{13}, \delta_{CP}) R_{12}(\theta_{12})$

2 mass squared difference: Δm^2_{21} = m^2_2 - m^2_1 , Δm^2_{31} = m^2_3 - m^2_1

Two instrinsic parameters: baseline L and energy E

Global fit status

The prediction of the flavour/symmetry models must be in agreement with experimental data

... while fractional accuracy of **known** parameters improved. In particular, Δm^2 formally determined at the subpercent level, $1\sigma = 0.8\%$

TABLE I: Global 3ν oscillation analysis: best-fit values and allowed ranges at $N_{\sigma} = 1, 2, 3$, for either NO or IO. The last column shows the formal " 1σ parameter accuracy," defined as 1/6 of the 3σ range, divided by the best-fit value (in percent). We recall that $\Delta m^2 = m_3^2 - (m_1^2 + m_2^2)/2$ and that δ/π is cyclic (mod 2). Last row: $\Delta \chi^2$ offset between IO and NO.

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range	" 1σ " (%)
$\delta m^2/10^{-5} \ \mathrm{eV}^2$	NO, IO	7.37	7.21 - 7.52	7.06 - 7.71	6.93 - 7.93	2.3
$\sin^2 \theta_{12} / 10^{-1}$	NO, IO	3.03	2.91 - 3.17	2.77 - 3.31	2.64 - 3.45	4.5
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.495	2.475 - 2.515	2.454 - 2.536	2.433 - 2.558	0.8
	IO	2.465	2.444 - 2.485	2.423 - 2.506	2.403 - 2.527	0.8
$\sin^2 \theta_{13} / 10^{-2}$	NO	2.23	2.17 - 2.27	2.11 - 2.33	2.06 - 2.38	2.4
	IO	2.23	2.19 - 2.30	2.14 - 2.35	2.08 - 2.41	2.4
$\sin^2 \theta_{23} / 10^{-1}$	NO	4.73	4.60 - 4.96	4.47 - 5.68	4.37 - 5.81	5.1
	IO	5.45	5.28 - 5.60	4.58 - 5.73	4.43 - 5.83	4.3
δ/π	NO	1.20	1.07-1.37	0.88 - 1.81	0.73 - 2.03	18
	IO	1.48	1.36 - 1.61	1.24 - 1.72	1.12 - 1.83	8
$\Delta \chi^2_{\rm IO-NO}$	IO-NO	+5.0				

But there are reasons to be cautious about subpercent accuracy levels... E.g., correlated effects of v interaction uncertainties in different expts need improvement

Talk by Eligio

Motivation

• At present parameters with large 1 sigma uncertainties:

 $heta_{23}$: 5.1% $heta_{12}$: 4.5% δ_{CP} : 18%

- Future experiments expected to measure these parameters within subpercent level
- Given this fact: we ask two questions:
- (i) The models that are allowed now, will they be still allowed in future ?
- (ii) Can the future experiments distinguish different models ?

The experimts we consider to test the models are

ESSnuSB in Europe: Will have the best precision of δ_{CP} -I and Davide are part of this project

T2HK in Japan: Will have excellent sensitivity to θ_{23} and δ_{CP} DUNE in USA: Will have excellent sensitivity to θ_{23} , δ_{CP} JUNO in China: Will have the best sensitivity to θ_{12}

The ESSnuSB Experiment

ESSnuSB - Horizon (2018 - 2022) – 3 M€ ESSnuSB+ -Horizon EU (2023 - 2026) - 3 M€ 13 countries23 Institutes

Water Cherenkov Far Detector- 540 kt 5 MW Proton beam, 2 Gev proton energy

Main Goal: Precision measurement of the CP Violation phase with a long baseline setup

Other goals: Neutrino Cross-section measurements with the near detectors, Sterile neutrino searches with a short baseline setup, etc.

Sensitivity of ESSnuSB

Designed to probe second oscillation maximum

12 sigma sensitivity to discover CP violation for maximal values

Will measure δ_{CP} with less than 8° precision for all values

Alekou, et al. [ESSnuSB] Eur. Phys. J. ST 231 (2022), 3779-3955

Abe et al. [Hyper-Kamiokande](2018), Ghosh and Ohlsson (2020), Agarwalla, Kundu and Singh (2024)

An et al. [JUNO], J. Phys. G 43 (2016) no.3, 030401

Let's consider a model which predicts the values of mixing parameters in the form of a sum rule And the sum rule depends only upon one variable: One parameter model

Let's consider a model which predicts the values of mixing parameters in the form of a sum rule And the sum rule depends only upon one variable: One parameter model

For example: Feruglio, Hagedorn and Ziegler JHEP 07 (2013) 027

 $G_f = S_4 \rtimes CP$ broken to $G_e = Z_3$ and $G_\nu = Z_2 \times CP$

	I	II	IV	V
$\sin^2 \theta_{13}$	$\frac{2}{3}\sin^2\theta$	$\frac{2}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$
$\sin^2 \theta_{12}$	$\frac{1}{2+\cos 2\theta}$	$\frac{1}{2+\cos 2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$rac{1}{2} \left(1 - rac{\sqrt{3}\sin 2 heta}{2 + \cos 2 heta} ight)$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{2\sqrt{6}\sin 2\theta}{5 + \cos 2\theta} \right)$
$ \sin \delta $	1	0	1	0

Let's consider a model which predicts the values of mixing parameters in the form of a sum rule And the sum rule depends only upon one variable: One parameter model

For example: Feruglio, Hagedorn and Ziegler JHEP 07 (2013) 027

 $G_f = S_4 \rtimes CP$ broken to $G_e = Z_3$ and $G_\nu = Z_2 \times CP$ Step1: Find a value of θ which gives the values of mixing parameters Consistent with their experimental values

	I	II	IV	V
$\sin^2 \theta_{13}$	$\frac{2}{3}\sin^2\theta$	$\frac{2}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$
$\sin^2 \theta_{12}$	$\frac{1}{2+\cos 2\theta}$	$\frac{1}{2+\cos 2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$rac{1}{2} \left(1 - rac{\sqrt{3}\sin 2 heta}{2 + \cos 2 heta} ight)$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{2\sqrt{6}\sin 2\theta}{5 + \cos 2\theta} \right)$
$ \sin \delta $	1	0	1	0

Let's consider a model which predicts the values of mixing parameters in the form of a sum rule And the sum rule depends only upon one variable: One parameter model

For example: Feruglio, Hagedorn and Ziegler JHEP 07 (2013) 027

 $G_f = S_4 \rtimes CP$ broken to $G_e = Z_3$ and $G_\nu = Z_2 \times CP$ Step1: Find a value of θ which gives the values of mixing parameters Consistent with their experimental values

To do that define a χ^2 = (data – model)²/ σ

	I	II	IV	V
$\sin^2 \theta_{13}$	$\frac{2}{3}\sin^2\theta$	$\frac{2}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$
$\sin^2 \theta_{12}$	$\frac{1}{2+\cos 2\theta}$	$\frac{1}{2+\cos 2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{\sqrt{3}\sin 2\theta}{2 + \cos 2\theta} \right)$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{2\sqrt{6}\sin 2\theta}{5 + \cos 2\theta} \right)$
$ \sin \delta $	1	0	1	0

Let's consider a model which predicts the values of mixing parameters in the form of a sum rule And the sum rule depends only upon one variable: One parameter model

For example: Feruglio, Hagedorn and Ziegler JHEP 07 (2013) 027

 $G_f = S_4 \rtimes CP$ broken to $G_e = Z_3$ and $G_\nu = Z_2 \times CP$ Step1: Find a value of *θ* which givesthe values of mixing parametersConsistent with their experimental values

To do that define a χ^2 = (data – model)²/ σ

	I	II	IV	V
$\sin^2 \theta_{13}$	$\frac{2}{3}\sin^2\theta$	$\frac{2}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$	$\frac{1}{3}\sin^2\theta$
$\sin^2 heta_{12}$	$\frac{1}{2+\cos 2\theta}$	$\frac{1}{2+\cos 2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$	$\frac{\cos^2\theta}{2+\cos^2\theta}$
$\sin^2 \theta_{23}$	$\frac{1}{2}$	$rac{1}{2} \left(1 - rac{\sqrt{3}\sin 2 heta}{2 + \cos 2 heta} ight)$	$\frac{1}{2}$	$\frac{1}{2} \left(1 - \frac{2\sqrt{6}\sin 2\theta}{5 + \cos 2\theta} \right)$
$ \sin \delta $	1	0	1	0

Model	θ°	χ 2
1	10.5	12.6
П	169.5	8.91
IV	15.0	7.28
V	165.2	36.8

Full set of one parameter models

$$G_f = A_5
times CP$$

broken to $_e = Z_3 (Z_2 imes Z_2)$ and $__
u = Z_2 imes CP$

$O_f = O_4 \land O_1$

broken to $G_e = Z_4$ (or $Z_2 \times Z_2$) and $G_{\nu} = Z_2 \times CP$

	V	VII-a	VII-b
$\sin^2 heta_{13}$	$\frac{1-\sin 2\theta}{3}$	$\frac{(\cos\theta - \theta)}{4\theta}$	$\frac{\varphi \sin \theta}{\varphi^2}$
$\sin^2 heta_{12}$	$\frac{1}{2+\sin 2\theta}$	$\frac{(\varphi \cos \theta)}{4\varphi^2 - (\cos \theta)}$	$(+\sin\theta)^2$ $(\theta - \varphi \sin\theta)^2$
$\sin^2 heta_{23}$	$\frac{1}{2}$	$\frac{(\varphi^2 \cos \theta - \sin \theta)^2}{4\varphi^2 - (\cos \theta - \varphi \sin \theta)^2}$	$\frac{\varphi^2(\cos\theta + \varphi\sin\theta)^2}{4\varphi^2 - (\cos\theta - \varphi\sin\theta)^2}$
$ \sin \delta $	1	()

	VI-a	VI-b
$\sin^2 heta_{13}$	$\frac{1}{4}\left(\sqrt{2}\cos^{2}\theta\right)$	$\cos \theta + \sin \theta \Big)^2$
$\sin^2 heta_{12}$	$\frac{1}{5-\cos 2}$	$\frac{2}{\theta - 2\sqrt{2}\sin 2\theta}$
$\sin^2 heta_{23}$	$\frac{4\sin^2\theta}{5-\cos 2\theta-2\sqrt{2}\sin 2\theta}$	$1 - rac{4\sin^2 heta}{5-\cos 2 heta - 2\sqrt{2}\sin 2 heta}$
$\sin\delta$		0

broken to
$$G_e = Z_5$$
 and $G_\nu = Z_2 \times CP$

$$\begin{array}{|c|c|c|c|c|c|} \hline & II & III & III & IV \\ \hline \sin^2 \theta_{13} & \frac{3-\varphi}{5} \sin^2 \theta & \frac{\varphi}{\sqrt{5}} \sin^2 \theta & \frac{\varphi}{\sqrt{5}} \sin^2 \theta \\ \sin^2 \theta_{12} & \frac{2\cos^2 \theta}{3+2\varphi+\cos 2\theta} & \frac{4-2\varphi}{5-2\varphi+\cos 2\theta} & \frac{4-2\varphi}{5-2\varphi+\cos 2\theta} \\ \sin^2 \theta_{23} & \frac{1}{2} & \frac{1}{2} - \frac{\sqrt{3-\varphi} \sin 2\theta}{3\varphi-2+\varphi \cos 2\theta} & \frac{1}{2} \\ \left|\sin \delta\right| & 1 & 0 & 1 \\ \end{array}$$

Feruglio, Hagedorn and Ziegler JHEP 07 (2013) 027, Li and Ding, JHEP 05 (2015)

Step 2

Step2: List all the models according to the value of the χ^2 and reject the ones which have very high values of χ^2 : This excludes the models with respect to the current data

Model	Case	$\chi^2_{ m min}$	$ heta_{ m bf}$	$ heta_{3\sigma}$
1.1	VII-b (A_5)	5.37	17.0°	$(16.3^{\circ}, 17.7^{\circ})$
1.2	III (A_5)	5.97	169.9°	$(169.4^{\circ}, 170.4^{\circ})$
1 3	$IV(S_i)$	7 98	15.0°	$(14.3^{\circ}, 15.7^{\circ})$
1.0	IV (<i>D</i> 4)	1.20	165.0°	$(164.3^{\circ}, 165.7^{\circ})$
1.4	II (S_4)	8.91	169.5°	$(169.0^{\circ}, 170.0^{\circ})$
15	$W(A_{\tau})$	11 2	10.1°	$(9.6^\circ, 10.6^\circ)$
1.0	IV (A5)	11.0	169.9°	$(169.4^{\circ}, 170.4^{\circ})$
16	$\mathbf{I}(\mathbf{S}_{i})$	12.6	10.5°	$(10.0^{\circ}, 11.1^{\circ})$
1.0	1 (04)		169.5°	$(168.9^{\circ}, 170.0^{\circ})$
1.7	VII-a (A_5)	14.8	16.9°	$(16.2^{\circ}, 17.6^{\circ})$
1.8	VI-b (S_4)	18.1	115.3°	$(114.8^{\circ}, 115.8^{\circ})$
1 0	II (A-)	21.8	16.5°	$(15.7^\circ, 17.3^\circ)$
1.9	$\Pi(A_5)$	21.0	163.5°	$(162.7^\circ, 164.3^\circ)$
1.10	${ m V}~(S_4)$	36.8	165.2°	$(164.4^{\circ}, 165.9^{\circ})$
1.11	VI-a (S_4)	53.8	115.3°	$(114.8^{\circ}, 115.8^{\circ})$

Blennow, MG, Ohlsson and Titov, JHEP 07 (2020), 014

Final step

Final step: Test the survived models in future experiments

Model	$sin^2 heta_{23}$	$\delta_{CP}{}^{o}$
1.1	0.523	180
1.2	0.593	180
1.3	0.5	+-90
1.4	0.606	180
1.5	0.5	+-90

Depending on the precision, LBL can verify their viability

Test in JUNO

Model	$sin^2\theta_{12}$
1.1	0.331
1.2	0.283
1.3	0.318
1.4	0.341
1.5	0.283

Depending on the precision, JUNO can exclude all the models

Blennow, MG, Ohlsson and Titov, Phys. Rev. D 102 (2020), 115004

Two parameter models Sum rule depends only upon two variables

 $G_f = S_4 \text{ or } A_5$ broken to $G_e = Z_k$, k > 2 or $Z_m \times Z_n$, $m, n \ge 2$ and $G_\nu = Z_2$,

$$\begin{aligned} \mathbf{Case B1.} & \sin^{2} \theta_{13} = \cos^{2} \theta_{12}^{\circ} \sin^{2} \theta, \\ \sin^{2} \theta_{23} = \frac{\cos^{2} \theta_{23}^{\circ} \sin^{2} \theta \sin^{2} \theta_{12}^{\circ} + \cos^{2} \theta \sin^{2} \theta_{23}^{\circ} - \frac{1}{2} \sin 2\theta \sin 2\theta_{23}^{\circ} \sin \theta_{12}^{\circ} \cos \phi}{1 - \sin^{2} \theta_{13}}, \sin^{2} \theta_{12} = \frac{\sin^{2} \theta_{12}^{\circ}}{1 - \sin^{2} \theta_{13}} \\ \cos \delta = \frac{\cos^{2} \theta_{13}(\cos^{2} \theta_{23} - \cos^{2} \theta_{12}^{\circ} \cos^{2} \theta_{23}^{\circ}) - \sin^{2} \theta_{12}^{\circ}(\cos^{2} \theta_{23} - \sin^{2} \theta_{13} \sin^{2} \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13}|\sin \theta_{12}^{\circ}|(\cos^{2} \theta_{13} - \sin^{2} \theta_{12}^{\circ})^{\frac{1}{2}}} \\ \mathbf{Case B2.} & \sin^{2} \theta_{13} = \cos^{2} \theta_{13}^{\circ} \sin^{2} \theta_{12}^{\circ} \sin^{2} \theta + \sin^{2} \theta_{13}^{\circ} \cos^{2} \theta + \frac{1}{2} \sin 2\theta \sin 2\theta_{13}^{\circ} \sin \theta_{12}^{\circ} \cos \phi \\ \sin^{2} \theta_{23} = \frac{\cos^{2} \theta_{12}^{\circ} \sin^{2} \theta}{1 - \sin^{2} \theta_{13}}, \sin^{2} \theta_{12} = \frac{\cos^{2} \theta_{13} - \cos^{2} \theta_{12}^{\circ} \cos^{2} \theta_{13}^{\circ}}{1 - \sin^{2} \theta_{13}} \\ \cos \delta = \frac{\cos^{2} \theta_{13}(\sin^{2} \theta_{12}^{\circ} - \cos^{2} \theta_{23}) + \cos^{2} \theta_{12}^{\circ} \cos^{2} \theta_{13}^{\circ}}{(\cos^{2} \theta_{13}^{\circ} - \cos^{2} \theta_{13}^{\circ}) \cos^{2} \theta_{13}^{\circ}} \\ \sin 2\theta_{23} \sin \theta_{13}|\cos \theta_{12}^{\circ} - \cos^{2} \theta_{23}^{\circ}) + \cos^{2} \theta_{12}^{\circ} \cos^{2} \theta_{13}^{\circ}(\cos^{2} \theta_{23} - \sin^{2} \theta_{13} \sin^{2} \theta_{23}) \\ \sin 2\theta_{23} \sin \theta_{13}|\cos \theta_{12}^{\circ} \cos \theta_{13}^{\circ}|(\cos^{2} \theta_{13} - \cos^{2} \theta_{12}^{\circ} \cos^{2} \theta_{13}^{\circ})|^{\frac{1}{2}} \end{aligned}$$

G _e	G_{ν}	Case	$\sin^2 heta_{12}^\circ$	$\sin^2 heta_{13}^\circ$	$\sin^2 \theta_{23}^{\circ}$
Z ₃	Z_2	B1S4	1/3	-	1/2
Z ₃	Z_2	B2S4	1/6	1/5	-
Z_5	Z_2	$B1A_5$	0.276	_	1/2
$Z_2 \times Z_2$	Z_2	$B2A_5$	0.095	0.276	-
$Z_2 \times Z_2$	Z_2	B2A ₅ II	1/4	0.127	-

$$G_f = A_5$$

broken to $G_e = Z_2$ and $G_\nu = Z_k$, $k > 2$ or $Z_m \times Z_n$, $m, n \ge 2$,

$$\begin{aligned} & \text{Case A1. } \sin^2 \theta_{13} = \cos^2 \theta \sin^2 \theta_{13}^\circ + \cos^2 \theta_{13}^\circ \sin^2 \theta \sin^2 \theta_{23}^\circ + \frac{1}{2} \sin 2\theta \sin 2\theta_{13}^\circ \sin \theta_{23}^\circ \cos \phi \\ & \sin^2 \theta_{23} = \frac{\sin^2 \theta_{13}^\circ - \sin^2 \theta_{13} + \cos^2 \theta_{13}^\circ \sin^2 \theta_{23}^\circ}{1 - \sin^2 \theta_{13}}, \ \sin^2 \theta_{12} = \frac{\cos^2 \theta_{23}^\circ \sin^2 \theta}{1 - \sin^2 \theta_{13}} \\ & \cos \delta = \frac{\cos^2 \theta_{13} (\sin^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} | \cos \theta_{13}^\circ \cos \theta_{23}^\circ | (\cos^2 \theta_{13} - \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ)^{\frac{1}{2}}}. \end{aligned}$$

$$\begin{aligned} & \text{Case A2.} \\ & \sin^2 \theta_{13} = \sin^2 \theta \cos^2 \theta_{23}^\circ, \ \sin^2 \theta_{23} = \frac{\sin^2 \theta_{23}^\circ}{1 - \sin^2 \theta_{13}} \\ & \sin^2 \theta_{12} = \frac{\cos^2 \theta \sin^2 \theta_{12}^\circ + \cos^2 \theta_{12}^\circ \sin^2 \theta \sin^2 \theta_{23}^\circ - \frac{1}{2} \sin 2\theta \sin 2\theta_{12}^\circ \sin \theta_{23}^\circ \cos \phi}{1 - \sin^2 \theta_{13}} \\ & \sin^2 \theta_{12} = \frac{\cos^2 \theta \sin^2 \theta_{12}^\circ + \cos^2 \theta_{12}^\circ \sin^2 \theta \sin^2 \theta_{23}^\circ - \frac{1}{2} \sin 2\theta \sin 2\theta_{12}^\circ \sin \theta_{23}^\circ \cos \phi}{1 - \sin^2 \theta_{13}} \\ & \cos \delta = \frac{\cos^2 \theta_{13} (\cos^2 \theta_{12} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ) - \sin^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13}^\circ - \sin^2 \theta_{23}^\circ \cos^2 \theta_{23}^\circ)}{1 - \sin^2 \theta_{13}} \\ & \cos \delta = \frac{\cos^2 \theta_{13} (\cos^2 \theta_{12} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ) - \sin^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13}^\circ - \sin^2 \theta_{23}^\circ \cos^2 \theta_{23}^\circ - \sin^2 \theta_{23}^\circ \cos^2 \theta_{23}^\circ)}{1 - \sin^2 \theta_{13}} \\ & \cos \delta = \frac{\cos^2 \theta_{13} (\cos^2 \theta_{12} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ) - \sin^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13}^\circ - \sin^2 \theta_{23}^\circ \cos^2 \theta_{23}^\circ - \sin^2 \theta_{23}^\circ - \sin^2 \theta_{23}^\circ \cos^2 \theta_{23}^\circ - \sin^2 \theta$$

G _e	G_{ν}	Case	$\sin^2 heta_{12}^\circ$	$\sin^2 heta_{13}^\circ$	$\sin^2 \theta_{23}^{\circ}$
Z_2	Z_3	$A1A_5$		0.226	0.436
Z_2	Z_3	$A2A_5$	0.226	_	0.436

Girardi, Petcov, Stuart and Titov, Nucl. Phys. B902 (2016) 1 ²¹

Model predictions

Model	Case	$\chi^2_{ m min}$	$ heta_{ m bf}$	$ heta_{3\sigma}$	$\phi_{ m bf}$	$\phi_{3\sigma}$
0.1	$\Lambda 1 (\Lambda_{-})$	0.151	47.2°	$(43.2^{\circ}, 50.9^{\circ})$	163.2°	$(158.0^{\circ}, 180^{\circ}]$
2.1	AI (A_5)	0.151	132.8°	$(129.1^\circ, 136.8^\circ)$	16.8°	$[0,22.0^\circ)$
9 9	$B2(S_i)$	0.386	54.4°	$(49.3^\circ, 59.7^\circ)$	149.7°	$(148.0^{\circ}, 154.3^{\circ})$
2.2	$\mathbf{D}\mathbf{Z}$ ($\mathbf{D}4$)	0.380	125.6°	$(120.3^\circ, 130.7^\circ)$	30.3°	$(25.7^{\circ}, 32.0^{\circ})$
23	$B2(4_{r})$	9 49	51.3°	$(48.2^{\circ}, 56.0^{\circ})$	161.4°	$(150.4^{\circ}, 180^{\circ}]$
2.0	$\mathbf{D}\mathbf{Z}(\mathbf{A}_5)$	2.49	128.7°	$(124.0^{\circ}, 131.8^{\circ})$	18.6°	$[0,29.6^\circ)$
24	$\mathbf{P1}(\mathbf{A})$	4 40	10.1°	$(9.6^\circ, 10.6^\circ)$	132.6°	$(84.4^{\circ}, 180^{\circ}]$
2.4	D1 (115)	4.40	169.9°	$(169.4^{\circ}, 170.4^{\circ})$	47.4°	$[0,95.6^\circ)$
2.5	R1	5 67	10.5°	$(10.0^{\circ}, 11.0^{\circ})$	126.4°	$(85.1^\circ, 180^\circ]$
2.0	DI	0.01	169.5°	$(169.0^\circ, 170.0^\circ)$	53.6°	$[0,94.9^\circ)$
2.6	B2 (4- II)	14.8	52.2°	$(50.1^{\circ}, 52.9^{\circ})$	180°	$(164.7^{\circ}, 180^{\circ}]$
2.0	$\mathbf{D}\mathbf{Z}$ $(\mathbf{A}_5 \mathbf{\Pi})$	14.0	127.8°	$(127.1^\circ, 129.9^\circ)$	0	$[0, 15.3^\circ)$
27	$A2(A_r)$	23.6	11.5°	$(10.9^\circ, 12.0^\circ)$	132.4°	$(108.6^\circ, 180^\circ]$
2.7	AZ (A_5)		168.5°	$(168.0^{\circ}, 169.1^{\circ})$	47.6°	$[0,71.4^\circ)$

The Models 2.6 – 2.7 are excluded for further analysis

Blennow, MG, Ohlsson and Titov, JHEP 07 (2020), 014

Test in LBL

Difficult to exclude by LBL

2.5	2.4	2.3	2.2	2.1	Model
0.563	0.563	0.563	0.563	0.554	$sin^2 heta_{23}$
{-125.7, 125.7}	{-132.1, 132.1}	{145.2, -145.2}	{74.0, -74.0}	{-41.9, 41.9}	δ_{CP}°

Blennow, MG, Ohlsson and Titov, Phys. Rev. D 102 (2020), 115004

Blennow, MG, Ohlsson and Titov, JHEP 07 (2020), 014, Blennow, MG, Ohlsson and Titov, Phys. Rev. D 102 (2020), 115004

Testing a modular symmetry theory

They need different treatment as generally they don't give a sum rule

Model A: With linear seesaw

Behera, S. Mishra, Singirala and Mohanta, Phys. Dark Univ. 36 (2022) 101027

			Fe	rmions		Scala	rs	Yukawa couplings	
Fields	e_R^c	μ_R^c	τ_R^c	$L_{\wp L}$	N_R	S^c_L	$H_{u,d}$	ρ_a	$\mathbf{Y}=(y_1,y_2,y_3)$
$SU(2)_L$	1	1	1	2	1	1	2	1	—
$U(1)_Y$	1	1	1	$-\frac{1}{2}$	0	0	$\frac{1}{2},-\frac{1}{2}$	0	—
A_4	1	1′	1″	1,1'',1'	3	3	1	1	3
k_I	1	1	1	-1	-1	-1	0	0	2

3 theories based on A₄ modular symmetry

Model C: With type III seesaw P. Mishra, Behera, Panda and Mohanta, Eur. Phys. J. C 82 (2022) 1115

Model B: With type I seesaw

F. Feruglio, 1706.08749

		Fer	mions	5		Scalars	Yukawa couplings
Fields	E_{1R}^c	E^c_{2R}	E^c_{3R}	L	N_R^c	$H_{u,d}$	$\mathbf{Y}=(y_1,y_2,y_3)$
$ SU(2)_L $	1	1	1	2	1	2	—
$U(1)_Y$	1	1	1	$-\frac{1}{2}$	0	$\frac{1}{2},-\frac{1}{2}$	—
A_4	1	1″	1′	3	3	1	3
k_I	-1	-1	-1	-1	-1	0	2

		Permic	ons	Scala	rs	Yukawa couplings		
Fields	E_{1R}^c	E^c_{2R}	E^c_{3R}	L	$\Sigma_{R_i}^c$	$H_{u,d}$	ρ_c	$\mathbf{Y} = (y_1, y_2, y_3)$
$SU(2)_L$	1	1	1	2	3	2	1	-
$U(1)_Y$	1	1	1	$-\frac{1}{2}$	0	$\frac{1}{2}, -\frac{1}{2}$	0	-
A_4	1	1′	1″	$1,1^{\prime\prime},1^{\prime}$	3	1	1	3
k_I	0	0	0	0	-2	0	2	2

Model predictions

$$\mathcal{W}_{\nu} = G_D L_{\wp_L} H_u \left(\mathbf{Y} N_R \right)_{1,1'',1'} + G'_D \left[L_{\wp_L} H_u \left(\mathbf{Y} S_L^c \right)_{1,1',1''} \right] \frac{\rho_a^3}{\Lambda_a^3} \\ + \left[\alpha_{NS} \mathbf{Y} (S_L^c N_R)_{\text{sym}} + \beta_{NS} \mathbf{Y} (S_L^c N_R)_{\text{Anti-sym}} \right] \rho_a$$

 $G_D = \operatorname{diag}(\alpha_D, \ \beta_D, \ \gamma_D) \text{ and } G'_D = \operatorname{diag}(\alpha'_D, \ \beta'_D, \ \gamma'_D)$

 $\mathcal{W}_{\nu} = g(N_R^c H_u LY)_1 + M_b (N_R^c N_R^c Y)_1$ g term gives two invariant singlets g₁and g₂

$$\mathcal{W}_{\nu} = (\alpha_{\Sigma})_{ij} \left[H_u \Sigma_{R_i}^c \sqrt{2} \mathbf{Y} L_j \right] + \frac{M_{\Sigma}'}{2} \left(\beta_{\Sigma} \operatorname{Tr} \left[\mathbf{\Sigma}_{\mathbf{R}_i}^c \mathbf{Y} \mathbf{\Sigma}_{\mathbf{R}_i}^c \right]_s + \gamma_{\Sigma}' \operatorname{Tr} \left[\mathbf{\Sigma}_{\mathbf{R}_i}^c \mathbf{Y} \mathbf{\Sigma}_{\mathbf{R}_i}^c \right]_a \right) \frac{\rho_c}{\Lambda_c}$$

$$\alpha_{\Sigma} = \operatorname{diag} (a_1, a_2, a_3), \, \beta_{\Sigma} = \operatorname{diag} (b_1, b_2, b_3) \text{ and } \gamma_{\Sigma}' = \operatorname{diag}(\gamma_1, \gamma_2, \gamma_3)$$

Model A and C: predict normal mass ordering

Model B: Predicts inverted mass ordering

Parameter ranges for Model A

Parameter	Range	Parameter	range
$\operatorname{Re}[\tau]$	[-0.5, 0.5]	β'_D	$[6.0 - 9.9] \times 10^{-3}$
${ m Im}[au]$	[1.2, 1.8]	γ_D'	$[3.2 - 8.3] \times 10^{-3}$
α_D	$[6.7 - 9.7] imes 10^{-6}$	$lpha_{NS}$	[0.1 - 0.24]
β_D	$[4.4 - 4.8] \times 10^{-6}$	β_{NS}	$[1-2.2] \times 10^{-5}$
γ_D	$[5.2 - 8.8] \times 10^{-6}$	Λ_a	$[10^5, 10^6] { m ~GeV}$
α'_D	$[2.3-6.3] imes 10^{-3}$	$v_{ ho_a}$	$[10^4, 10^5]~{\rm GeV}$

Parameter ranges for Model B

$\operatorname{Re}(au)$	$\operatorname{Im}(au)$	g_1	g_2	M_b [GeV]
[-0.1, 0.1]	$\left[1.5, 2.0\right]$	$[1,3] \times 10^{-5}$	$[2,5] imes 10^{-5}$	$[10^6, 10^7]$

Parameter ranges for Model C

Parameter	Range	Parameter	range
$\operatorname{Re}[\tau]$	[-0.5, 0.5]	b_2	$[0.8-8] \times 10^{-1}$
$\operatorname{Im}[\tau]$	[0.75, 2]	b_3	$[1-7] \times 10^{-3}$
a_1	$[5-10] \times 10^{-7}$	γ_{Σ}	$[0.1,1] \times 10^{-9}$
a_2	$[4.5-10]{\times}10^{-6}$	M'_{Σ}	$[10^7, 10^8]$ GeV
a_3	$[0.5-5] \times 10^{-7}$	Λ_c	$[10^7, 10^8] { m ~GeV}$
b_1	$[0.7-5] \times 10^{-2}$	$v_{ ho_c}$	$[10^6, 10^7] { m ~GeV}$

Mishra, Behera, Panda, MG and Mohanta, JHEP 09 (2023). 144

Allowed parameter space

Tests in LBL

Model	$sin^2 heta_{23}$	δ_{CP} o
А	0.428	45.3
В	0.452	0
С	0.469	213.18

Mishra, Behera, Panda, MG and Mohanta, JHEP 09 (2023), 144

Mishra, Behera, Panda, MG and Mohanta, JHEP 09 (2023), 144

sin² **θ**₁₂

Further test: Seprating Model-A from Model-B

- Flavour/modular symmetry theories predict values of the mixing parameters which are allowed by the data
- Future experiments will measure the mixing parameters with sub percent precision
- Therefore, these models can be tested in these experiments
- ESSnuSB, T2HK, DUNE and JUNO will play a major role in validating these models.

- Flavour/modular symmetry theories predict values of the mixing parameters which are allowed by the data
- Future experiments will measure the mixing parameters with sub percent precision
- Therefore, these models can be tested in these experiments
- ESSnuSB, T2HK, DUNE and JUNO will play a major role in validating these models.