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Introduction
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Our understanding of particle physics is based on symmetries

The SM explains and predicts many subatomic phenomena.
® |nteractions dictated by gauge symmetries
SU(3)C X 5U(2)[_ X U(l)y.
® U(1), and U(1)p prevent gauge-allowed phenomena,
paradigmatically proton decay and neutrino masses.
® Fermion and gauge boson masses from SSB mechanism.

® Explicitly broken symmetries still shape our intuition: isospin,
chiral, flavour, CP...

® Symmetries continue guiding our search for new physics.
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Need for BSM physics

The SM has some well-known observational and theoretical
shortcomings:

Dark matter

Matter-antimatter asymmetry

Neutrino masses

Strong CP problem

Flavour puzzle

Hierarchy problem (if new scales are added to the SM)
Gravity
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Neutrino masses

e Neutrino oscillations entering the precision (<1%) era, see
talk by Eligio Lisi. Simplest explanation for the L/E profile are
massive neutrinos.

® For now, the neutrino mass mechanism is a mistery:

® Tree level, radiative, extra dimensional...?

® The scale(s) of relevant NP

® Neutrino nature: Dirac or Majorana

® Lepton number conservation /violation, for an exhaustive
analysis of the AL = 2 case see talk by Julia Harz

® Why 0 < m, < Agw and big lepton mixing, part of the
flavour puzzle

® Popular framework: The seesaw mechanism|1]

[1]Peter Minkowski. “u — e+ at a Rate of One Out of 102 Muon Decays?” In: Phys.Lett.B67 (1977), pp. 421-428
DO 10.1016/0370-2693(77)90435-X, Tsutomu Yanagida. “Horizontal gauge symmetry and masses of neutrinos”.
In: Conf. Proc. C 7902131 (1979). Ed. by Osamu Sawada and Akio Sugamoto, pp. 95-99, Rabindra N. Mohapatra
and Goran Senjanovic. “Neutrino Mass and Spontaneous Parity Nonconservation™. In: Phys. Rev. Lett. 44 (1980),
p. 912. DOI: 10.1103/PhysRevLett.44.912, Murray Gell-Mann, Pierre Ramond, and Richard Slansky. “Complex
Spinors and Unified Theories”. In: Conf. Proc. C 790927 (1979), pp. 315-321. arXiv: 1306.4669 [hep-th], J.
Schechter and J. W. F. Valle. “Neutrino Masses in SU(2) x U(1) Theories”. In: Phys. Rev. D 22 (1980), p. 2227.
DOIL: 10.1103/PhysRevD.22.2227.
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Scales of the seesaw

® Seesaw mechanism: generates small m, via large scale
suppression. In the Type-I:

y2 v2

M

m,, ~

® High-scale seesaws: Mixing proportional to m,, no
realistically testable signatures
® | ow-scale seesaws: m,, suppressed by a symmetry-protected
small parameter . Sizeable N — v mixing even in the m, — 0
limit.[2]. Potentially testable, rich phenomenology.
® Allows for: charged lepton flavour violation (cLFV),

cosmological imprints, collider-accesible exotic particles, lepton
non-unitarity...

[2l. Bernabeu et al. “Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model".
In: Phys. Lett. B 187 (1987), pp. 303-308. pDOI: 10.1016/0370-2693(87)91100%2.
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L breaking and Goldstone bosons

® | epton number accidentally conserved in the SM. A choice
has to be taken for neutrino masses|[3]:
® | conservation: Dirac neutrinos
® AL = 2: Majorana neutrinos
® AL = 3: Dirac neutrinos again
L4 ces
® If broken spontneously, the Goldstone theorem: spontaneous
breaking of a continuous global symmetry = massless
scalar[4]. Examples:
® Pions (approximate chiral symmetry)
® Axions (PQ symmetry)
® Majoron, Diracon (lepton-number-like symmetries)
® |n our models: Goldstone bosons arise naturally and play a
__ key phenomenological role
[3]Martin Hirsch, Rahul Srivastava, and José W. F. Valle. “Can one ever prove that neutrinos are Dirac particles?”
In: Phys. Lett. B 781 (2018), pp. 302-305. DoOI: 10.1016/j.physletb.2018.03.073. arXiv: 1711.06181
[hep-ph].

[4]Yoichiro Nambu. “Quasiparticles and Gauge Invariance in the Theory of Superconductivity”. In: Phys. Rev. 117
(1960). Ed. by J. C. Taylor, pp. 648—663. DOI: 10.1103/PhysRev.117.648, J. Goldstone. “Field Theories with
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Model overview

¢ Known models (Canonical versions of IS & Type-I DS):
® Spontaneous version of the inverse seesaw/[5]
® Type-l Dirac seesaw[6]
® New models (Goldstone-Enhanced versions of IS & Type-|
DS):
® Majoron-Enhanced Inverse Seesaw([7]
® Diracon-Enhanced Type-| Dirac seesaw|[8]

[5]M.C. Gonzalez-Garcia and J. W. F. Valle. “Fast Decaying Neutrinos and Observable Flavor Violation in a New
Class of Majoron Models". In: Phys.Lett. B216 (1989), pp. 360-366. DOI: 10.1016/0370-2693(89)91131-3.

[6]Ernest Ma and Rahul Srivastava. “Dirac or inverse seesaw neutrino masses with B — L gauge symmetry and S3
flavor symmetry”. In: Phys. Lett. B 741 (2015), pp. 217-222. poI: 10.1016/j.physletb.2014.12.049. arXiv
1411.5042 [hep-ph].

[7]Salvador Centelles Chulia, Antonio Herrero-Brocal, and Avelino Vicente. “The Type-l Seesaw family”. In: JHEP
07 (2024), p. 060. DOI: 10.1007/JHEPO7 (2024)060. arXiv: 2404.15415 [hep-ph].

[8]Salvador Centelles Chulia et al. “Flavour and cosmological probes of Diracon models”. In: (June 2025). arXiv:
2506.06449 [hep-ph].
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The building blocks

® All of our models share a common structure. To the SM
gauge and particle content we add:

® One global U(1) symmetry.
® One complex scalar singlet o breaking U(1).
® A set of gauge-singlet fermions with different U(1) charges.
® Note that the direct Dirac analogue of the standard inverse
seesaw is covered by the Type-1 Dirac seesaw[9]

[9]Salvador Centelles Chulia, Rahul Srivastava, and Avelino Vicente. “The inverse seesaw family: Dirac and Majo-
rana”. In: JHEP 03 (2021), p. 248. pOI: 10.1007/JHEP03(2021)248. arXiv: 2011 ,06609 [hep-ph].
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Our guiding symmetry: a U(1) with multiple roles

® Global U(1) symmetry which plays several roles:

® Determines the Dirac/Majorana nature of neutrinos.

® Controls the Yukawa and seesaw structure.

® |ts breaking gives rise to a Goldstone boson (Majoron or
Diracon) and controls its interactions.

® The Dirac models are chiral.
If identified with U(1)g_; it is anomaly-free (except one
model). Could be promoted to a gauge symmetry, see talk by
Rahul Srivastava and[10]

® Can stabilize a DM candidate (not studied here), see[11]

® This symmetry links the origin of neutrino mass to low-energy
flavour and cosmological phenomenology

[10]im Herbermann and Manfred Lindner. “Improved cosmological limits on Z' models with light right-handed
neutrinos”. In: (May 2025). arXiv: 2505.04695 [hep-ph].

[1X]esar Bonilla et al. “Dark matter stability and Dirac neutrinos using only Standard Model symmetries”. In: Phys.

Rev. D 101.3 (2020), p. 033011. por: 10.1103/PhysRevD.101.033011. arXiv: 1812.01599 [hep-ph], Salvador
Centelles Chulia et al. “Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries”. In: Chin.
Phys. C 44.8 (2020), p. 083110. DOI: 10.1088/1674-1137/44/8/083110. arXivzi 1901 66402« [Hep-ph]?
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Model overview: Inverse seesaw vs Type-l Dirac seesaw

U(1) charges
Majorana Dirac
Fields | SU(2), ® U(1)y | IS¢ | 1S/ T-I¢ T-1?
H (2,3) 0] 0 0 0
o (1,0) 2 1 3 3
L (2,-1) -1 -1 -1 -1
VR (1,0) 0 0 | (—4,-4,5)| 2
N, (1,0) -1 0 -1 2
Ngr (1,0) -1 -1 -1 -1

ISC: Canonical Inverse Seesaw 1S”: Majoron-enhanced Inverse Seesaw
T-I: Canonical Type-l Dirac Seesaw T-1P: D-enhanced Type-l Dirac Seesaw
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Phenomenological overview

The U(1) charges control the phenomenology!

Model | v nature | cLFV | G-cLFV | ANg
Canonical IS Majorana 4 X ®
J-enhanced IS Majorana 4 4 4
Canonical T-1 DS Dirac 4 x 4
D-enhanced T-1 DS Dirac 4 4 4

(IS = Inverse Seesaw, T-I DS = Type-l Dirac Seesaw,
J = Majoron, D = Diracon)
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Flavour observables
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'Standard’ cLFV: u — ey

® All 4 models are low-scale seesaws, i.e. the N — v mixing is
not m, suppressed.
® cLFV discussed at length this week. Here we focus on the

'golden’ decay u — ey
8

by —> » —— (g

3 2 4
® BR(Lo = {57) ~ fiits (i) e
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[e]e] lelelele]e]

Flavour violating Goldstone: u — eG

¢ Model-dependent. Completely general calculation in[12].

® |t involves both the N — v mixing and the structure of the
G vjvj coupling.

nj

o

n;

[12}ntonio Herrero-Brocal and Avelino Vicente. “The majoron coupling to charged leptons™. In: JHEP 01 (2024),
p. 078. DoI: 10.1007/JHEP01(2024)078. arXiv: 2311.10145 [hep-ph].
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i — eG, canonical models

In the canonical models, the Goldstone interaction with leptons is
neutrino-mass suppressed.

Majorana Inverse Seesaw Type-| Dirac Seesaw
N\ T 0 vy 0 c
14 14 _ T v
AN ERCE YR N o O ) (e
3R V2 Ty S’j N, %Y’ M Ng
L 0 M \ﬁ L
m, = L YM-LY' MY T m, = e YMy!

The Yukawa structure and neutrino mass generation, completely
fixed by the U(1) charges, leads to Ly o< m, GIT'¢
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1 — eG, enhanced models

In the enhanced models, the Goldstone interaction with leptons is
not suppressed by neutrino masses.

Majoron-Enhanced Inverse Seesaw Diracon-Enhanced Type-l Seesaw
S\ T 0 Y 0 c
UL 2 g o\ (0 %Y
nc v yT 0 Yoyt VL NG VR
)l 0wl G ()G
St 0 Y 1 St
m, =S YY"y =ty T m, = LYY=l

The Goldstone couplings are not responsible for the neutrino mass
suppression!
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1 — eG, enhanced models

In both cases:
iG

Lo = ———
UG = 3072 Vg

7 [I\/Ig Te(Y Y1) 95 +2M, Y YT P = 2Y YT M, PR] ¢

Yyt 1
and My = —v, Y’
Vo V2

potentially sizeable even if ;4 — 0 leading to m, — 0

8Get X
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Comparison between cLFV decays

® 1, — eG is enhanced compared to © — ev. In the simplifying
degenerate BSM limit (Y — y'ly and p — ply):

BR(p — eG 2
BR(k > eG) 93, 108,72 <ﬂ)
BR(u — ev) TeV
® But experimental constraints are much stronger for . — ev:
BR(u — ey) < 1.5 x 10713 BR(u — eG) <107°
(MEG-I1) (TRIUMF)

® Both will be improved in the near future! See talk by Paolo
Cattaneo.
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Comparison between cLFV decays

1 decays
_4F L N
® For sizeable Yukawas 10 Ruled out e
(darker blue), Goldstone . 1p-6| o %

decays dominate — even % &
for high SSB scales 1 107 e
(vo ~ 10* TeV). < 10-1 §§
~ | =)
® ;1 — ey becomes = b | _g
observable for smaller /M 10 :ﬂ? =
Yukawas (lighter blue). 10-14 L E |~
® Models clearly plagued by 0 102 102 100 ooz

the flavour problem!

Br(u— ev)
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Cosmological probes
(o] lelelele]e]

Standard Neutrino Cosmology and AN

® T > 1 MeV: active v in thermal equilibrium with the plasma via
weak interactions.

® v decouple at T ~ 1 MeV, remaining as ultrarelativistic species. In
the instantaneous decoupling approximation:

7 4 4/3
Prad = Py T Pv = Py 1+8<11> X3

® More generally:

74\ Puv + PBSM
Prad P~y + ] (11) eff | 5 eff Py

* NSM =3.044. BSM effects are parametrized as ANer = Negr — NV
® Sensitive observable in BBN and CMB.

® See e.g.[13] for extended discussion

[13ulien Lesgourgues et al. Neutrino Cosmology. Cambridge University Press, Feb. 2013. 1sBx: 978-1-108-70501-1,
978-1-139-60341-6.
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Cosmological probes
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AN in our models

® pgsm can get contributions from
® The massless Diracon/Majoron
® Potentially light radial mode of o
® Extra light neutrino degrees of freedom in the Dirac models
® Scalar contributions to N essentially dependent on Ay,. No
constraints on neutrino physics.

® For Dirac models, contributions from vg can be very relevant!
Produced by the decay of heavy N.
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ANg in the Canonical Dirac Type-l seesaw

L Np,

Production of N: controlled by Y Decay into vg: controlled by Y’
Both couplings (Y and Y') related to m,
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Cosmological probes
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ANg in the Canonical Dirac Type-l seesaw

:

- p

. !
=0.10 |
< i
- a

thermalized

freeze-in
non-thermal N

vr contribution to AN in terms of y’ for a benchmark point
Mp =1 TeV in the degenerate BSM limit.
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ANg in the canonical Type-l seesaw

102
CMB-HD
1 CMB-54
10 SO/SPT-3G
ACT
10°
10-!
>
31072
1072, Ay
Log
10-4 ‘\f’ffa,,
/70/; 1 e
g
1073 & &
§) N
1078 s
10°% 10~/ 107° 10— 10°% 10° 102 10°% 10°
!

y

Combination of constraints for My = 1 TeV in the degenerate BSM limit.
Cosmology stronger than cLFV, but complementary!
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ANg in the enhanced Diracon Type-| seesaw

Decay into vg: suppressed by

Y mixing! In particular the N — vg
L . Yukawas in the mass basis are
Y proportional to

w/ve = Y'Y tm, /v
Production of N: controlled by Y
Contribution of vg to ANgsg suppressed by m,
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Potential future directions

Collider signatures:
® Production of exotic scalars or fermions.
® Modified Higgs interactions.
® Leptogenesis:
® Can the low(ish)-scale (~ 10%) TeV setup accommodate
successful baryogenesis?
e Extensions with flavour symmetries:
® Predictive frameworks for Uy, LFV, CP phases and v0ee (for
Majorana models).
Diracon/Majoron as dark matter candidates:

e |f U(1) is explicitly broken, the Goldstone boson acquires mass.
Can be a good DM candidate.

® Enhanced models will be more constrained than canonical
models, already studied in the literature.
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Conclusions and summary

® [ow-scale seesaw models are theoretically motivated and
phenomenologically rich.

e Similar field content and structure, phenomenology and neutrino
nature controlled by U(1) charges.

® Showcases the complementarity between 'standard’” BSM cLFV
searches, exotic lepton decays and cosmological probes.

® Goldstone bosons (Majoron, Diracon) are promising windows into
the symmetry origin of neutrino masses.
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Conclusions and summary

Model v nature | cLFV | G-cLFV | AN
Canonical IS Majorana -4 X ®
J-enhanced IS Majorana 4 ) 4 4
Canonical T-1 DS Dirac 4 X 4
D-enhanced T-I DS Dirac 4 4 4

I 1™ WORKSHOP
= Flavor Symmetries
and Consequences

in Accelerators
ROME 2025 and Cosmology

Thank you for your attention!
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Scalar contributions to Ngg

1002 1000 1079 10°° 104
a
For very small mixing angle a, the portal coupling at fixed v, is
suppressed and production proceeds via freeze-in. At larger mixing, the
extended scalar spectrum is tightly coupled to the SM. The difference
between low and high-scale realizations comes from thermalization of the
radial mode. If v, < v Diracons can be resonantly produced.
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Scalar contributions to Ngg

10°
CMB-HD
102 CMB-S4
SO/SPT-3G
10! ACT
—— Planck
10°
3107t
1072
1073
1074
10731 = = =7 =3 =5 = = -2
10 10 10 10 10 10 10 10 10

lal

Figure 4: Limits on the scalar sector without considering contributions from the new heavy
fermions. Current limits Planck and ACT are weaker than limits from Higgs invisible decay
except for the resonant low-scale regime. Future experiments like CMB-S4 will put strong
limits on low-scale variations, whereas futuristic proposals like CMB-HD have the potential
to constrain the scalar sector on all scales. The scalar self coupling is fixed to A\, = 0.1, and
we show contours of |Ay,| for comparison.
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445 solution

® The 445 solution naturally leads to a Dirac seesaw with
AL = 3, as it forbids the tree level term LHvg but allows
LHO’I/R

® |t is anomaly free. From Ma, Srivastava 2014

U(1)p_r . Using the particle content of the standard model, all triangle gauge anomalies

are zero except for

Suh,=-3 (1)

This is easily solved with the addition of three (right-handed) singlet neutrinos, which

contribute —3(—1)* = +3. Note that the gauge-gravitational anomaly is also zero because
3(—1) = +3. Numerous studies have been made regarding this model of U{1)g_p .

In this paper, we point out that there is another simple choice for three families [3-5].

Let v ~ n; under B — L, then ny 53 = (45, —4, —4) yields
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