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Disclaimer
This is a very young topic, all input is welcome and important.

Goofy transformations are new, understanding them for yourself may be rewarding.

Complete list of existing literature on Goofy transformations:
• [Ferreira, Grzadkowski, Ogreid, Osland 2306.02410] FGOO → GOOFy

Original goofy transformation in 2HDM.
• [Haber and Ferreira 2502.11011]

Goofy transformations in two-scalar toy model of [Grzadkowski @ Multi-Higgs, Lisbon, 2024]
• [AT 2505.00099]

My take on the matter, this talk
• [Ferreira, Grzadkowski, Ogreid 2506.21145]

“imaginary scaling” goofy transformations in 2HDM and two-scalar toy model

Very brief remarks on the original Goofy transformation in:
• [Cao, Cheng, Xu 2305.12764v2 (of 3/2024)]
• [Pilaftsis 2408.04511]

Coincidentially, German “Youth word of the year” 2023: Goofy [Langenscheidt], [Wikipedia]

e.g. 2012: YOLO, . . . , 2020: lost, 2021: cringe, . . . , 2023: goofy
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The first Goofy transformation
2HDM: Scalar doublets Φa=1,2(x) in (2,−1/2) of SU(2)L ×U(1)Y.

The invariant scalar potential conventionally written as m11,22, λ1,2,3,4∈R
m12, λ5,6,7∈C

V (Φ∗,Φ) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 + λ1(Φ

†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

−
{
m2

12Φ
†
1Φ2

}
+

{
λ5(Φ

†
1Φ2)

2 + [λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)]Φ

†
1Φ2

}
+ h.c..

Community agrees, all possible (exact global) symmetries of 2HDM are known:
[Ivanov ’06, ’07], [Ferreira, Haber, Maniatis, Nachtmann, Silva ’11], [Deshpande, Ma ’78], [Ginzburg, Krawczyk ’05], [Nishi ’11], [Pilaftsis ’12], . . .

CP1 , Z2 , U(1) , CP2 , CP3 , SU(2) .

However, FGOO≡[Ferreira, Grzadkowski, Ogreid, Osland ’23] found the relations

m2
11 = −m2

22 , λ1 = λ2 , λ6 = −λ7 .

• These are renormalization group (RG) stable to all orders.
• Do not correspond to any of the known regular 2HDM symmetries.
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The first Goofy transformation
The relations m2

11 = −m2
22 , λ1 = λ2 , λ6 = −λ7 , (1)

can be obtained by requiring invariance of V (Φ∗,Φ) under the transformation:
[Ferreira, Grzadkowski, Ogreid, Osland ’23]

Φ1 7→ −Φ∗2 , Φ2 7→ Φ∗1 , Φ∗1 7→ Φ2 , Φ∗2 7→ −Φ1 .

⇐⇒ m2
11 ←→ −m2

22 , λ1 ←→ λ2 , λ6 ←→ −λ7 .

Crucial: Independent transformation of Φi and Φ∗i .

Consider canonical (gauge-)kinetic terms

K = (DµΦ1)
†(DµΦ1) + (DµΦ2)

†(DµΦ2) ,

Applied to the (gauge-)kinetic terms the transformation maps
K 7→ −K ,

If imposed as an exact symmetry this would enforce K = 0.

⇒ This transformation cannot be an exact symmetry in a dynamical theory, K ̸= 0.
But how can relations (1) then be RG stable?
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Definition of Goofy transformations
Any theory:

L[ϕ] = K(kin.)[ϕ] − V(pot.)[ϕ] .

• How come, when talking about symmetry transformations, we usually only
consider constraining the potential V[ϕ]?

• Naive perception: K[ϕ] is invariant under all possible sym. transformations...

. . . but this is just wrong!

Defining criterion:

Regular transformations
act trivially on kinetic term. ←→

Goofy transformations
act non-trivially on kinetic term.

Crucial: Transformation ̸= Symmetry.

Transformations (regular/goofy) can be physically important, even if explicitly broken.
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Regular vs. Goofy

in Surfing, Skateboarding, Snowboarding, . . .
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RG stability of Goofy parameter relations
There are parameter relations derived from a transformation acting on V (Φ∗,Φ).

Central question:

How can these parameter relations be RG stable, even if the corresponding
transformation is explicitly broken by the (gauge-)kinetic terms K?

Why in the first place do symmetries lead to RG stable parameter relations?
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RG stable parameter relations and symmetry
Why in the first place do symmetries lead to RG stable parameter relations?

Preserved symmetry ⇐⇒ RG stable parameter relations.

This is a folk wisdom, based on ’t Hooft’s technical naturalness argument: [’t Hooft ’79]

βg ≡ d g

dµ
∝ g iff g → 0 enhances the symmetry.

Proof of this (for all possible symmetries) has never been given to the best of my knowledge.

We will present a general (non-perturbative) formal argument in [De Boer, AT to appear].

It is based on the fact that prospective symmetries can be viewed as (linear) maps
in the parameter space of a theory because they act as outer automorphisms.

[Fallbacher, AT ’15]

In short: Couplings transform covariantly ⇒ β-functions trafo covariantly.
Symmetries of β-functions ≥ symmetries of theory.

[De Boer, AT to appear]

Andreas Trautner Goofy Symmetries, 04.07.25 9/ 18



RG stable parameter relations and symmetry
Why in the first place do symmetries lead to RG stable parameter relations?

Preserved symmetry ⇐⇒ RG stable parameter relations.

This is a folk wisdom, based on ’t Hooft’s technical naturalness argument: [’t Hooft ’79]

βg ≡ d g

dµ
∝ g iff g → 0 enhances the symmetry.

Proof of this (for all possible symmetries) has never been given to the best of my knowledge.

We will present a general (non-perturbative) formal argument in [De Boer, AT to appear].

It is based on the fact that prospective symmetries can be viewed as (linear) maps
in the parameter space of a theory because they act as outer automorphisms.

[Fallbacher, AT ’15]

In short: Couplings transform covariantly ⇒ β-functions trafo covariantly.
Symmetries of β-functions ≥ symmetries of theory.

[De Boer, AT to appear]

Andreas Trautner Goofy Symmetries, 04.07.25 9/ 18



RG stable parameter relations and symmetry
Why in the first place do symmetries lead to RG stable parameter relations?

Preserved symmetry ⇐⇒ RG stable parameter relations.

This is a folk wisdom, based on ’t Hooft’s technical naturalness argument: [’t Hooft ’79]

βg ≡ d g

dµ
∝ g iff g → 0 enhances the symmetry.

Proof of this (for all possible symmetries) has never been given to the best of my knowledge.

We will present a general (non-perturbative) formal argument in [De Boer, AT to appear].

It is based on the fact that prospective symmetries can be viewed as (linear) maps
in the parameter space of a theory because they act as outer automorphisms.

[Fallbacher, AT ’15]

In short: Couplings transform covariantly ⇒ β-functions trafo covariantly.
Symmetries of β-functions ≥ symmetries of theory.

[De Boer, AT to appear]

Andreas Trautner Goofy Symmetries, 04.07.25 9/ 18



Computing RG fixed points
[AT ’25], [De Boer, AT to appear]

Consider theory with fields ϕa, ϕ
∗
a=1,...,N ∈ C and couplings λi=1,...,K .

If there is a transformation that acts on the fields as (A, B unitary)

T : ϕ⃗ 7→ Aϕ⃗ , ϕ⃗∗ 7→ B∗ϕ⃗∗ , (A = B: regular, A ̸= B: goofy)

that can equivalently be represented as a mapping in the space of couplings⋆

T : λ⃗ 7→ Oλ⃗ , (O can be derived from A and B)

then the full coupled system of (non-linear) beta functions

β
λ⃗

≡ µ
d λ⃗

dµ
= f⃗(λ1, λ2, . . . ) ,

transforms covariantly, and in the same irreps as the couplings themselves.
This poses non-perturbative, all-order constraints on β

λ⃗
of the form Oβ

λ⃗
= f⃗

∣∣∣
λ⃗→Oλ⃗

.
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Computing RG fixed points
• The existence of such transformations⋆ imposes strong all order exact

constraints on system of β functions.
Namely, the covariant β functions are spanned by covariant combination of couplings.

• This argument does not require such transformations to be conserved, the
mere existence is enough.

• This argument holds at the non-perturbative level.
• The more of such possible transformations exist, the more restricted is overall

system of β functions.

• If the transformations are imposed to be conserved as symmetries
=⇒ Non-trivally transforming covariant combination of λi’s must vanish,
=⇒ Beta functions of nontrivially transforming λi’s are forced to βλi = 0.

This is the completed version of ’t Hooft’s argument.
[AT ’25], [De Boer, AT to appear]

⋆All outer automorphism transformations are of this kind.
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Example for a regular transformation in 2HDM
• In absence of other symmetries, most general SU(2) Higgs-basis change is

outer automorphism Φ′ = UΦ, Φ′∗ = U∗Φ∗. Couplings transform covariantly.
see e.g. [Ferreira, Haber, et al. ’10], [AT ’18], [Bednyakov ’18],. . .

E.g. the following combination transforms as SU(2) triplet (vector)

Λ⃗ := const. ×
(
Re(λ6 + λ7),−Im(λ6 + λ7),

1

2
(λ1 − λ2)

)T

.

Our argument then implies that explicitly known to six loops [Bednyakov ’18, ’24]

βΛ⃗ ∝ Λ⃗ .

• This is because contributions from other vectors do not contribute to βΛ:
- M⃗(m2

11,m
2
22,m

2
12) wrong mass dimension. (our argument for scaling outer automorphism)

- 5-plet Λ̃(λ3, λ4, . . . ), 3 ⊂ (5⊗ 5⊗ . . . ), but these contractions vanish for single 5.
⇒ This shows Λ⃗ = 0 is RG fixed point to all orders in scalar+gauge corrections.
• Fixed point Λ⃗ = 0, implied by any trafo that requires λ1 = λ2 and λ6 = −λ7.
• E.g. CP2 implies Λ⃗ = 0. And this survives soft breaking (m2

11 ̸= ±m2
22).
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• This is because contributions from other vectors do not contribute to βΛ:
- M⃗(m2

11,m
2
22,m

2
12) wrong mass dimension. (our argument for scaling outer automorphism)

- 5-plet Λ̃(λ3, λ4, . . . ), 3 ⊂ (5⊗ 5⊗ . . . ), but these contractions vanish for single 5.
⇒ This shows Λ⃗ = 0 is RG fixed point to all orders in scalar+gauge corrections.
• Fixed point Λ⃗ = 0, implied by any trafo that requires λ1 = λ2 and λ6 = −λ7.
• E.g. CP2 implies Λ⃗ = 0. And this survives soft breaking (m2

11 ̸= ±m2
22).
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What is different for Goofy transformations?
• Most general basis for (gauge-)kinetic terms

K = (DµΦi)
†Kij (D

µΦj) with Kij = K∗ji .

• Wave function renormalization coeffs. Kij trafo covariantly under goofy trafos.
• In view of RGEs, Kij should be treated exactly like couplings of the potential.
• Unfortunately, however, β functions are generally computed starting from

canonical basis (not wrong, but not good here). −→ workaround:

• Starting from canonical kinetic terms Kij = δij , goofy transformations

Φ 7→ AΦ , Φ† 7→ Φ†B† . Here, (B†A) is unitary + must be hermitean.

⇒ There exists a basis where effect of the most general transformation on
(gauge-)kinetic terms is given by

K 7→ κ1 (DµΦ1)
†(DµΦ1)+κ2 (DµΦ2)

†(DµΦ2) with κ1 = ±1, κ2 = ±1 .

↷ Can use std. RGEs + propagator / gauge vertex counting to restore covariants κi.
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Back to original question: RG stability of goofy parameter relations
FGOO 2HDM parameter relations: m2

11 = −m2
22, λ1 = λ2, λ6 = −λ7.

• Consider e.g. βλ1−λ2 . Under FGOO trafo, must trafo like (λ1 − λ2), i.e. as a 1′.
• Other 1′ covariants are (λ6 + λ7) and κ1, κ2. (m2

11 +m2
22 has wrong mass dimension)

⇒ Beta function βλ1−λ2 to all orders(!) can only be given by
n + m = odd

βλ1−λ2 = (λ1 − λ2) f+(λi) + (λ6 + λ7) g+(λi) + κn1κ
m
2 h+(λi) ,

where f+, g+, h+ are functions of all λi that transform trivially.

• Turns out for 2HDM:
The global sign of the kinetic term does not enter the β functions ⇔ h+ = 0.

• Analogous arguments hold for βm2
11+m

2
22

and βλ6+λ7 .
• This shows that if FGOO relation is imposed, it is not violated in the RG flow.

↷ Goofy symmetries are explicitly broken by K ̸= 0, but this breaking is soft!
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New goofy transformations in 2HDM
[AT ’25]

Explicit action of flavor-/CP-type global-sign-flipping Goofy transformations

Φ⃗ ≡
(
Φ1,Φ2,Φ

∗
1,Φ

∗
2

)T
, Φ⃗ 7→

(
S 0
0 −S∗

)
Φ⃗ , or Φ⃗ 7→

(
0 X

−X∗ 0

)
Φ⃗ .

Goofy
trafo.

parameter relations accidental
regular sym.m2

11 m2
22 m2

12 λ1 λ2 λ3 λ4 λ5 λ6 λ7

PG (≡ 1⊕−1) 0 0 0 −
Z2,G (≡ σ3 ⊕−σ3) 0 0 0 0 −
CP1G 0 0 −m2

12
∗

λ∗
5 λ∗

6 λ∗
7 −

CP2G (FGOO) −m2
11 λ1 −λ6 −

U(1)G 0 0 0 0 0 0 U(1)
CP3G 0 0 0 λ1 λ1 − λ3 − λ4 0 0 CP2
SU(2)G 0 0 0 λ1 λ1 − λ3 0 0 0 SU(2)

CP2softG λ1 −λ6 −

Parameter relations for goofy transformations, RG stable to all orders in scalar and gauge quantum corrections.

These are genuinely new goofy transformations. FGOO discussed: CP2G + all regular.
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Applications of Goofy transformations

• An entirely new class of possible transformations and associated RG stable
fixed points have been missed so far in all QFTs, all models, . . .

• Bare scalar mass terms ϕ†ϕ explicitly break some goofy transformations
(non-zero mass gaps are possible).
⇒ Goofy symmetries can be instrumental in solving EW hierarchy problem.

• Relative-kinetic-term-sign-flipping goofy trafos are not RG stable but expose
RG sensitivity to generation dependent sign flips −→ connection to flavor.

• Goofy transformations can constrain non-canonical kinetic terms.

In particular, the non-trivial Kähler potential of SUSY theories. ⇒ Possibility to
remove a major roadblock for predictivity of many classes of flavor models
(discrete symmetries, modular symmetries, . . . )

[Chen, Fallbacher, (Omura), Ratz, Staudt ’12,’13], [Chen, Ramos-Sánchez, Ratz ’19]
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“Dynamical classicalization” and a request
• If goofy relations are imposed only on V , the “couplings” of the kinetic terms

(WFR) Kij still run under RG.
• In this case, vanishing kinetic term(s) are RG fixed points (symmetry is

enhanced there).
• Approaching these points in RG flow, the theory approaches a regime where

one or more of the fields become non-propagating
“quasi-classical background” or “auxiliary” fields.

⇒ RG evolution dynamically approaches a quasi-classical regime!
• To fully explore this regime, and systematically explore the all-order

constraints on WFR (anomalous dimensions), RGEs should be formulated
starting from the most general possible basis.

↷ Could track effect of goofy trafos on Kij and get all-order constraints on WFR
(anomalous dimensions), just as for the other couplings.

Working exclusively in the canonical basis one is blind to both of these effects!
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Conclusions

• Goofy transformations by definition do not leave invariant the kinetic terms.
• Explicit breaking of goofy trafos in kinetic terms can be soft, and parameter

relations enforced by goofy trafos can be stable to all orders in RG evolution.
• Symmetry of β functions ≥ symmetry of action. [AT ’25], [De Boer, AT to appear]

• It is mandatory to include goofy transformations to understand all (partial) RG
fixed points [RG fixed hyperplanes] of any QFT. [AT ’25], [De Boer, AT to appear]

• Many of the most important puzzles in our theoretical understanding of Nature
may be related to goofy transformations (e.g. EW hierarchy, flavor, . . . )

• Parameter regions of exact goofy symmetry are points where a QFT
dynamically approaches a quasi-classical regime for some of the fields.

• There are many goofy avenues worth exploring...
. . . I cannot think about QFT without goofy transformations anymore.
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Thank You!

Image credits: PNGaaa.com, Walt Disney ”Hawaiian Holiday” 1937
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Backup slides
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2HDM – Regular and global-sign-flipping goofy
Explicit action of global regular flavor- and CP-type transformations: [AT ’25]

Φ⃗ ≡
(
Φ1,Φ2,Φ

∗
1,Φ

∗
2

)T
, Φ⃗ 7→

(
S 0
0 S∗

)
Φ⃗ , or Φ⃗ 7→

(
0 X
X∗ 0

)
Φ⃗ .

Flavor- and CP-type Goofy versions of these transformations:

Φ⃗ 7→
(
S 0
0 −S∗

)
Φ⃗ , or Φ⃗ 7→

(
0 X

−X∗ 0

)
Φ⃗ .

Note: all of these are “global-sign-flipping goofy transformations” K 7→ −K.
Explicit choices for matrix generators of 2HDM transformations (ξ, ψ, θ ∈ R)

Z2,(G) : S =

(
1 0
0 −1

)
≡ σ3 , CP1(G) : X = 12 ,

U(1)(G) : S =

(
e−iξ 0

0 eiξ

)
, CP2(G) : X =

(
0 −1
1 0

)
≡ ε ,

SU(2)(G) : S =

(
e−iξ cos θ −e−iψ sin θ

eiψ sin θ eiξ cos θ

)
, CP3(G) : X =

(
cos θ − sin θ
sin θ cos θ

)
.
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2HDM – Relative-sign-flipping goofy transformations
We can also construct transformations that act with κ1 = −κ2 = ±1.
Action of goofy transformations with relative sign flip of the 2HDM kinetic terms in flavor-
or CP-type subvariants:

Φ⃗ 7→
(
A 0
0 B∗

)
Φ⃗ , or Φ⃗ 7→

(
0 C
D∗ 0

)
Φ⃗ .

With examples of explicit matrix generators given by

Z
−
2,G : A =

(
1 0
0 −1

)
, B∗ = 1, C = D∗ = 0 ,

CP4−G : A = B∗ = 0, C =

(
1 0
0 −1

)
, D∗ = 1 .

Z
−
4,G : A = B∗ =

(
1 0
0 i

)
, C = D∗ = 0 .

It turns out that none of these transformations is radiatively stable.
Reason: The relative sign of the kinetic terms does enter the β functions of the 2HDM.
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Goofy transformations 101 – Goofy basis change
Consider multiplet of complex scalars ϕa=1,...,N ∈ C and hermitean conjugate
fields ϕ†a.

Standard “canonical” kinetic term

K[ϕ, ϕ†] = ∂µϕ
† ∂µϕ = ∂µϕ

†
a δ

ab ∂µϕb .

Field space metric κabϕ†aϕb is only unity, κab = δab, in the canonical basis.
In any other basis κab ̸= δab. Recall that ϕ and ϕ† are independent degrees of
freedom. In particular, we can always do a general passive field redefinition

ϕ′ ≡ V ϕ , ϕ′† ≡ ϕ†U † .

Regular field redefinition: U = V , Goofy redefinition: U ̸= V .
The kinetic term then reads

K[ϕ, ϕ†] = K[V †ϕ′, ϕ′†U ] = ∂µϕ
′†
(
UV †

)
∂µϕ′ , ⇒ κ = UV † .

This is nothing else than rotating the kinetic term to / from a non-canonical basis.
Note: this discussion holds for any term (ϕ†ϕ)10 , (gauge-covariant) derivatives play no role here.
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Goofy transformations 101 – Goofy basis change
We actually do this all the time in going to the canonical basis in the first place!
In the most general basis, the kinetic terms are

K = κab (∂µϕa)
†(∂µϕb) with κab = κba ∗ .

Wave function renormalization coefficients κab ≡ “couplings” of kinetic term.
Any hermitean matrix κ can be written as

κ = U †

k1 0
0 k2

. . .

U , (U unitary, eigenvalues ka ∈ R)

U ’s can be absorbed in ϕ†, ϕ by a regular field redefinition.
Canonical diagonal entries are obtained by subsequent rescaling (no sum)

ϕa =
√
ka ϕ

′
a , and ϕ†a =

√
ka ϕ

′†
a .

Note: if any one of the ka < 0, this “rescaling” is a goofy transformation.
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Goofy transformations 101 – Active goofy transformations

Goofy transformations as active transformations (we assume unitary A, and B)

ϕ 7→ Aϕ , ϕ† 7→ ϕ†B† .

For canonical kinetic term this corresponds to a mapping

ϕ†a δ
ab ϕb 7→ ϕ†a(B

†A)abϕb .

For the action to stay real valued, (B†A) is required to be hermitean and unitary.
Therefore, (B†A)2 = 1 is of order 2. This means there is a basis in which∑
a

∂µϕ
†
a ∂

µϕa 7−→
∑
a

κa ∂µϕ
†
a ∂

µϕa with κa = ±1 (uncorrelated signs) .

In this basis goofy transformation corresponds to pure sign flips of kinetic terms.
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