

Selection rules for cLFV processes from residual flavour groups

Claudia Hagedorn IFIC - UV/CSIC

FLASY 2025, Roma Tre, Roma, 30.06-04.07.2025

Overview

- Introduction
- Idea of residual symmetries
- Systematic search
- Allowed cLFV processes
- Experimental constraints and prospects
- Summary and outlook

Based on

Lorenzo Calibbi, CH, Michael A. Schmidt, James Vandeleur (2505.24350 [hep-ph])

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - •

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
 - Dark Matter (DM)
 - •
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach
 - Flavour and CP violation needs to be kept under control
 - Possible correlations among different signals

Introduction

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explain
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Up;
 - Dark Matter (DM)
- Un; Un; ain symmetries Additionally, h phenomer
 - Pro can and CP violation needs to be kept under control
 - sible correlations among different signals

C. Hagedorn

Idea: Keep some residual symmetry among **charged leptons** and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

C. Hagedorn

see e.g. Feruglio/CH/Ziegler ('12)

Idea: Keep some residual symmetry among **charged leptons** and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

C. Hagedorn

see e.g. Feruglio/CH/Ziegler ('12)

Idea: Keep some residual symmetry among **charged leptons** and neutrinos, G_e and G_v , with $G_e \neq G_v$ Mismatch of symmetries corresponds to lepton mixing

C. Hagedorn

see e.g. Feruglio/CH/Ziegler ('12)

Indeed, the minimal choice Z₃ is often encountered (and G_ν = Z₂ × Z₂)
 Typical A₄ and S₄ models leading to tri-bimaximal mixing see e.g. Altarelli/Feruglio ('05), He/Keum/Volkas ('06), Lam ('08)

Indeed, the minimal choice Z₃ is often encountered (and G_ν = Z₂ × Z₂)
 Typical A₄ and S₄ models leading to tri-bimaximal mixing see e.g. Altarelli/Feruglio ('05), He/Keum/Volkas ('06), Lam ('08)

Also four interesting mixing patterns (Case 1) through Case 3 b.1)) arising from $G_f = \Delta(3 n^2)$ and $G_f = \Delta(6 n^2)$ and CP require Z_3 as residual group among charged leptons (and $G_{\nu} = Z_2 \times CP$) see e.g. CH/Meroni/Molinaro ('14), Ding/King/Neder ('14)

- Indeed, the minimal choice Z_3 is often encountered (and $G_{\nu} = Z_2 \times Z_2$)
- This Z_3 symmetry has been coined **lepton triality** $e \sim 1, \mu \sim \omega$ and $\tau \sim \omega^2$ with ω being the 3rd root of unity, $\omega = e^{\frac{2\pi i}{3}}$ correspond to Z_3 charge 0 for e, 1 for μ and 2 for τ (modulo 3) see e.g. Ma ('10)

- Indeed, the minimal choice Z_3 is often encountered (and $G_{\nu} = Z_2 \times Z_2$)
- This Z_3 symmetry has been coined **lepton triality** $e \sim 1, \mu \sim \omega$ and $\tau \sim \omega^2$ with ω being the 3rd root of unity, $\omega = e^{\frac{2\pi i}{3}}$ correspond to Z_3 charge 0 for e, 1 for μ and 2 for τ (modulo 3) see e.g. Ma ('10)
- It is known that it **forbids** cLFV processes such as $\mu \rightarrow e \gamma$, $\mu \rightarrow e e \overline{e}$ and $\mu - e$ conversion in nuclei N but **allows** for the tri-lepton tau lepton decays

$$\tau \rightarrow e e \bar{\mu}$$
 and $\tau \rightarrow \mu \mu \bar{e}$

see e.g. Feruglio/CH/Lin/Merlo ('08), Csaki/Delaunay/Grojean/Grossman ('08), Ma ('10), Holthausen/Lindner/Schmidt ('12), Pascoli/Zhou ('16), Bigaran et al. ('22), Lichtenstein/Schmidt/Valencia/Volkas ('23)

C. Hagedorn

- Indeed, the minimal choice Z_3 is often encountered (and $G_{\nu} = Z_2 \times Z_2$)
- However, it is definitely not the only possibility Other known examples are:
 - $G_e = Z_4$ (and $G_\nu = Z_2 \times Z_2$) from S_4 leads to bimaximal mixing see e.g. de Adelhart Toorop/Feruglio/CH ('11)
 - G_e = Z₅ (and G_v = Z₂ × Z₂ or G_v = Z₂ × CP) from A₅ (and CP) leads to golden ratio(-like) mixing see e.g. Feruglio/Paris ('11), Di Iura/CH/Meloni ('15), Ballett/Pascoli/Turner ('15),

Li/Ding ('15)

- $G_e = Z_7$ can arise in scenarios with the flavour symmetry PSL(2,7) see e.g. de Adelhart Toorop/Feruglio/CH ('11)
- further examples for G_e from $\Sigma(n \varphi)$ see e.g. CH/Meroni/Vitale ('13)

• Consider **small** $G_e = Z_N$ with $N \le 8$ (also discussed direct products)

- Consider **small** $G_e = Z_N$ with $N \le 8$ (also discussed direct products)
- Are residuals of some discrete group that fits in U(3), maybe also SU(3)

- Consider **small** $G_e = Z_N$ with $N \le 8$ (also discussed direct products)
- Are residuals of some discrete group that fits in U(3), maybe also SU(3)
- Take into account all possible flavour charge assignments (α, β, γ); also those where two flavours have the same charge,
 e.g. Q(e) = 0, Q(μ) = 0 and Q(τ) = 1
 - \rightarrow consequences
 - Flavour charge assignments that require embedding in U(3) are encountered, e.g. Q(e) = 0, $Q(\mu) = 0$ and $Q(\tau) = 2$ in $G_e = Z_3$
 - Also $G_e = Z_2$ is included in the search

What is not included?

- Breaking effects of residual symmetry *G_e* (shifts in flavon VEVs, cross-talk between different symmetry breaking sectors, etc.)
 - \rightarrow consequences
 - e.g. in case of lepton triality $\tau \rightarrow \mu\mu\bar{\mu}$ becomes allowed, but its BR should be more suppressed than $\tau \rightarrow \mu\mu\bar{e}$

What is not included?

- Breaking effects of residual symmetry *G_e* (shifts in flavon VEVs, cross-talk between different symmetry breaking sectors, etc.)
- Effects arising from concrete model realisation
 - \rightarrow consequences

e.g. in case of lepton triality BR ($\tau \rightarrow \mu \mu \bar{e}$) \gg BR ($\tau \rightarrow e e \bar{\mu}$) in SUSY version of well-known A_4 model

see e.g. Muramatsu/Nomura/Shimizu ('16)

but conclusion depends on whether certain flavon components mix or not

```
see e.g. Pascoli/Zhou ('16)
```


• Interested in studying cLFV processes, lepton number is conserved

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure

e.g.
$$\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_{e}) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_{e}) \to e e \mu^{\dagger} \mu^{\dagger}$$

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure e.g. $\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_{e}) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_{e}) \rightarrow ee\mu^{\dagger}\mu^{\dagger}$
- All operators conserve *number of charged leptons*,
 i.e.

$$(n_e^- - n_e^+) + (n_\mu^- - n_\mu^+) + (n_\tau^- - n_\tau^+) \equiv \Delta n_e + \Delta n_\mu + \Delta n_\tau = 0$$

Example: $ee\mu^{\dagger}\tau^{\dagger}$ is characterised by $\{\Delta n_e, \Delta n_{\mu}, \Delta n_{\tau}\} = \{2, -1, -1\}$ and fulfils the equation

- Interested in studying cLFV processes, lepton number is conserved
- Use SMEFT operators and focus on their flavour structure e.g. $\frac{1}{\Lambda^2} (\overline{\ell}_{\mu} \gamma_{\nu} \ell_{e}) (\overline{\ell}_{\mu} \gamma^{\nu} \ell_{e}) \rightarrow ee\mu^{\dagger}\mu^{\dagger}$
- All operators conserve *number of charged leptons*,
 i.e.

$$(n_e^- - n_e^+) + (n_\mu^- - n_\mu^+) + (n_\tau^- - n_\tau^+) \equiv \Delta n_e + \Delta n_\mu + \Delta n_\tau = 0$$

• All operators are *invariant under residual symmetry* $G_e = Z_N$ i.e. $\alpha \Delta n_e + \beta \Delta n_\mu + \gamma \Delta n_\tau = 0 \mod N$

with α flavour charge of e, β of μ and γ of τ

- Denote particular flavour charge assignment as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

0 mod
$$N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

- Denote particular flavour charge assignment as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

0 mod
$$N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

• $N(\delta_1, \delta_2)$ does not uniquely specify flavour charge assignment, e.g. $\mathbb{Z}_3(0, 0, 1)$ $\mathbb{Z}_3(1, 1, 2)$ $\mathbb{Z}_3(2, 2, 0)$ $\} \rightarrow 3(0, 1)$

- Denote particular flavour charge assignment as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

0 mod
$$N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

- $N(\delta_1, \delta_2)$ does not uniquely specify flavour charge assignment
- At this stage e, μ and τ can be permuted

- Denote particular flavour charge assignment as $Z_N(\alpha, \beta, \gamma)$
- Labelling can be reduced with the two constraints to two parameters $\delta_1 = \beta \alpha$ and $\delta_2 = \gamma \beta$ and the constraint

0 mod
$$N = \delta_1 \Delta n_\mu + (\delta_1 + \delta_2) \Delta n_\tau$$

so we have $N(\delta_1, \delta_2)$

- $N(\delta_1, \delta_2)$ does not uniquely specify flavour charge assignment
- At this stage e, μ and τ can be permuted
- We put flavour charge assignments compatible with *SU*(3) in **boldface**, but *N*(δ₁, δ₂) does not mean all corresponding flavour charge assignments have this property,

 $3\alpha + 2\delta_1 + \delta_2 = 0 \mod N$

e.g. **4**(**0**, **1**) corresponds to **Z**₄(**1**, **1**, **2**), but also $Z_4(0,0,1)$

Additional condition: C. Hagedorn

• Several equivalences among the flavour charge assignments: common factors, permutations, complex conjugation

- Several equivalences among the flavour charge assignments: common factors, permutations, complex conjugation
- For flavour structures:

Hermitian conjugation, trivial flavour structures (e.g. ee^{\dagger}), combinations of invariant flavour structures are not included

• Systematic scan over all possible flavour charge assignments $Z_N(\alpha, \beta, \gamma)$

$$0 \le \alpha \le \beta$$
, $0 \le \beta \le \gamma$, $0 \le \gamma \le N - 1$

• Scan over flavour structures $\{\Delta n_e, \Delta n_\mu, \Delta n_\tau\}$

$$0 \le \Delta n_e \le N$$
, $-N \le \Delta n_\mu \le N$, $\Delta n_\tau = -\Delta n_e - \Delta n_\mu$

• Output

Flavour		Flavour	Flav	our		Flavour
charges	d_ℓ	structures	char	ges	d_ℓ	structures
2 (0 , 1)	3	$e\mu^\dagger$	4(1,	1)	6	$e\mu^\dagger\mu^\dagger au$
	6	$\mu\mu au^{\dagger} au^{\dagger}$	3 * 24	-		$ee au^\dagger au^\dagger$
		$e\mu au^{\dagger} au^{\dagger}$			9	$e\mu\mu au^\dagger au^\dagger au^\dagger$
		$ee au^\dagger au^\dagger$				$eee\mu^\dagger\mu^\dagger au^\dagger$
3(0,1)	3	$e\mu^\dagger$			12	$\mu\mu\mu\mu au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
	9	$\mu\mu\mu\mu au^{\dagger} au^{\dagger} au^{\dagger}$				$eeee\mu^\dagger\mu^\dagger\mu^\dagger\mu^\dagger$
		$e\mu\mu au^{\dagger} au^{\dagger} au^{\dagger}$	5 (0 ,	1)	3	$e\mu^\dagger$
		$ee\mu au^{\dagger} au^{\dagger} au^{\dagger}$			15	$\mu\mu\mu\mu\mu\mu au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
		$eee au^\dagger au^\dagger au^\dagger$				$e\mu\mu\mu\mu\tau^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
3(1,1)	6	$e\mu au^\dagger au^\dagger$				$ee\mu\mu\mu\tau^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
		$e\mu^{\dagger}\mu^{\dagger} au$				$eee\mu\mu au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
		$ee\mu^{\dagger}\tau^{\dagger}$				$eeee\mu au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger} au^{\dagger}$
	9	$\mu\mu\mu\mu au^{\dagger} au^{\dagger} au^{\dagger}$				$eeee au^\dagger au^\dagger au^\dagger au^\dagger au^\dagger$
		$eee au^\dagger au^\dagger au^\dagger$	5(1,	1)	6	$e\mu^{\dagger}\mu^{\dagger} au$
		$eee\mu^{\dagger}\mu^{\dagger}\mu^{\dagger}$,	9	$eeu\tau^{\dagger}\tau^{\dagger}\tau^{\dagger}$

• Translate flavour structures of SMEFT operators into cLFV processes e.g. $e\mu^{\dagger}$

• Consider SMEFT operators up to dimension 6, i.e. $d_{\ell} \leq 6$

C. Hagedorn

• Confront the results with current and future experimental limits

- Confront the results with current and future experimental limits
- Distinguish between low-energy cLFV experiments and possible cLFV searches at high-energy colliders

- Confront the results with current and future experimental limits
- Distinguish between low-energy cLFV experiments and possible cLFV searches at high-energy colliders
- Consider up to three scenarios inspired by typical UV completions
 - Scenario 1: Tree-level new physics contributions all allowed Wilson coefficients (WCs) are set to $C_x = 1$ apart from the ones of the dipole operator $C_d = \frac{e}{16 \pi^2} \approx 0.002$
 - Scenario 2: One-loop new physics contributions all WCs are set to $C_x = \frac{1}{16 \pi^2} \approx 0.006$ and $C_d = \frac{e}{16 \pi^2} \approx 0.002$
 - Scenario 3: Dipole operators suppressed by Yukawa coupling meaning $C_d = \frac{\sqrt{2} m_\ell e}{16 \pi^2 v}$

C. Hagedorn

(formulae, see e.g. Calibbi/Marcano/Roy ('21))

C. Hagedorn No RG running. No matching of SMEFT to LEFT. FI

No RG running. No matching of SMEFT to LEFT.

FLASY 2025

No RG running. No matching of SMEFT to LEFT. C. Hagedorn

C. Hagedorn No RG running. No matching of SMEFT to LEFT.

- Comment on possible cLFV searches at high-energy colliders
- Test SMEFT operators with same sign tau leptons via scattering

$$e^{\pm}e^{\pm} \to \tau^{\pm}\tau^{\pm}, \quad e^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}, \quad \mu^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}$$

• With proposed experiment μ TRISTAN testable Hamada et al. ('22)

$$\sigma(\mu^+\mu^+ \to \tau^+\tau^+) = \frac{s}{2\pi} \frac{|C_x|^2}{\Lambda^4} \simeq 25 \,\text{fb} \,\left(\frac{\sqrt{s}}{2 \,\text{TeV}}\right)^2 \left(\frac{10 \,\text{TeV}}{\Lambda/\sqrt{|C_x|}}\right)^4$$

For $\sqrt{s} = 2$ TeV and $C_x = 1$ limit on new physics scale is $\Lambda \approx 30$ TeV

see e.g. Fridell/Kitano/Takai ('23)

- Comment on possible cLFV searches at high-energy colliders
- Test SMEFT operators with same sign tau leptons via scattering

$$e^{\pm}e^{\pm} \to \tau^{\pm}\tau^{\pm}, \quad e^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}, \quad \mu^{\pm}\mu^{\pm} \to \tau^{\pm}\tau^{\pm}$$

• With proposed experiment μ TRISTAN testable Hamada et al. ('22)

$$\sigma(\mu^+\mu^+ \to \tau^+\tau^+) = \frac{s}{2\pi} \frac{|C_x|^2}{\Lambda^4} \simeq 25 \,\text{fb} \,\left(\frac{\sqrt{s}}{2 \,\text{TeV}}\right)^2 \left(\frac{10 \,\text{TeV}}{\Lambda/\sqrt{|C_x|}}\right)^4$$

For $\sqrt{s} = 2$ TeV and $C_x = 1$ limit on new physics scale is $\Lambda \approx 30$ TeV

• Other possible probe four-body *Z* boson decays, e.g. $Z \rightarrow \tau \tau \bar{e} \bar{e}$, but constraints on Λ are (very) weak

C. Hagedorn

see e.g. Heeck/Sokhashvili ('24) FLASY 2025

Summary

- Derived selection rules for cLFV processes arising from residual symmetry $G_e = Z_N$ with $N \le 8$
- Focussing on SMEFT operators with dimension six or less all possible flavour charge assignments turn out to be equivalent to one for $G_e = Z_N$ with $N \le 4$
- If the flavour charges of *e* and *μ* are different, *μ* → *e* transitions are forbidden
- If so, experimental constraints on cLFV tau lepton decays and muonium to antimuonium conversion, $M \rightarrow \overline{M}$, are crucial, see $G_e = Z_3$ and $G_e = Z_4$

Outlook

- Consider **concrete models** with studied residual group G_e
- Analyse SMEFT operators with **lepton number violation**
- Apply **same logic to quark sector** and discuss quark flavour violation
 - Use G_e also for quarks, potentially with same flavour charge assignment
 - Or assume different residual symmetries for up and down quarks that in general also differ from G_e

Many thanks for your attention!

FLASY 2025

... one last point

Munich Institute for Astro-, Particle and Bio Physics

2026 MIAPbP Program Series

Fill the Gap: Signatures of Electronic Excitations in Dark Matter and Neutrino Direct Detection Experiments 2 - 27 March K. Schäffner, J. Pradler, F. Vissani, R. Catena, V. Zema

Precision Lepton Physics: a Window to New Physics 7 - 30 April C. Hagedorn, A. Lusiani, A. Papa, J. Price, A. Ibarra

Extension: August 31st!

Planet Formation across various Environments and Epochs 4 - 29 May M. Küffmeier, J. Pineda, J. Drążkowska, C. Manara, J. Huang

Continuing the JWST Revolution: Understanding Early Galaxy Formation 1 - 26 June P. Oesch, R. Ellis, B. Ciardi, A. Fontana, A. Shapley

Primordial Cosmology: Novel Perspectives from Scattering Amplitudes, Holography and the Bootstrap 29 June - 24 July P. Benincasa, D. Anninos, D. Baumann, J. Penedones, M. Carrillo González

Bridging Gaps in High-Mass Star Research: Physical Parameters, Formation and Evolution 10 August - 4 September S. Simón-Díaz, A. Bonanos, S. Ekström, M. Urbaneja, A. Barnes

Thermodynamics and Kinetics of Chemical Reaction Networks: From Cell Metabolism to Design Principles for Synthetic Life 7 - 18 September D. Busiello, D. Lacoste, T. Kobayashi, P. Schwille, U. Gerland

> Proposal submission/Application for program participation: www.munich-iapbp.de

If you are interested, please register!

Back-up slides

• Output

			Fla	avour arges	d.o	Flavour structures
Flavour charges	d_ℓ	Flavour structures	7(1	1 , 2)	9	$e\mu^2(\tau^{\dagger})^3$
6(0,1)	3	$e\mu^{\dagger}$				$e^{-}(\mu^{+})^{-} au^{+}$ $e^{3}\mu^{\dagger}(au^{\dagger})^{2}$
	18	$\mu^{\circ}(au^{+})^{\circ} = e\mu^{5}(au^{\dagger})^{6}$			15	$e(\mu^{\dagger})^5 au^4 \ e^4\mu(au^{\dagger})^5$
		$e^2 \mu^4 (au^\dagger)^6 \ e^3 \mu^3 (au^\dagger)^6$			21	$e^5(\mu^\dagger)^4 au^\dagger \ \mu^7(au^\dagger)^7$
		$e^4\mu^2(au^\dagger)^6 \ e^5\mu(au^\dagger)^6$	8(0, 1)			$e^7(\tau^{\dagger})^7$
		$e^6(au^\dagger)^6$		D , 1)	3	$\frac{e^{\mu}(\mu^{\dagger})^{\mu}}{e\mu^{\dagger}}$
${f 6}({f 1},{f 1})$	6	$e(\mu^\dagger)^2 au$	Ň		24	$\mu^8(au^\dagger)^8$
	9	$e^3(au^\dagger)^3$				$e\mu^{\hat{7}}(\tau^{\dagger})^{8}$
	12	$e^2 \mu^2 (au^\dagger)^4$				$e^2\mu^{\hat{6}}(au^{\dagger})^8$
		$e^4(\mu^\dagger)^2(au^\dagger)^2$				$e^3 \mu^5 (au^\dagger)^8$
	15	$e\mu^{4}(au^{\dagger})^{5}$				$e^4 \mu^4 (au^\dagger)^8$
		$e^5(\mu^\dagger)^{4} au^\dagger$				$e^5 \mu^3 (au^\dagger)^8$
	18	$\mu^{6}(\tau^{\dagger})^{6}$				$e^6\mu^2(au^\dagger)^8$

Restrictions from single flavour structure

$$\begin{array}{lll} e\mu^{\dagger} - N(0,a) & ee\mu^{\dagger}\mu^{\dagger} - 2N(N,a) & ee\mu^{\dagger}\tau^{\dagger} - N(N-a,2a) \\ \mu\tau^{\dagger} - N(a,0) & \mu\mu\tau^{\dagger}\tau^{\dagger} - 2N(a,N) & e\mu^{\dagger}\mu^{\dagger}\tau - N(a,a) \\ e\tau^{\dagger} - N(a,N-a) & ee\tau^{\dagger}\tau^{\dagger} - 2N(a,N-a) & e\mu\tau^{\dagger}\tau^{\dagger} - N(2a,N-a) \end{array}$$

a is an integer

Restrictions from single flavour structure

a is an integer

NT(S S)		Observable	Curren	t (Λ in TeV)	Future (Λ in TeV)			
$IV(o_1, o_2)$		Observable	Constraint	$\Lambda_{ m T}\left(\Lambda_{ m T\chi} ight)$	$\Lambda_{ m L}\left(\Lambda_{ m L\chi} ight)$	Constraint	Λ_{T}	$\Lambda_{ m L}$
2(0, 1)	$e\mu^\dagger$	${ m BR}(\mu o e \gamma)$	1.5×10^{-13} [53]	3000(73)	3000 (73)	$6 imes 10^{-14}$ [54]	3900	3900
		${ m BR}(\mu o ee \bar{e})$	1.0×10^{-12} [55]	500(290)	520(23)	10^{-16} [56]	5000	5200
		$\operatorname{CR}(\mu\operatorname{Au}\to e\operatorname{Au})$	$7 imes 10^{-13}$ [57]	1800 (1800)	430(140)	—	—	—
		$\operatorname{CR}(\mu\operatorname{Al}\to e\operatorname{Al})$	—		_	6×10^{-17} [58, 59]	15000	4000
9	$ee\mu^{\dagger}\mu^{\dagger}$	$\mathrm{P}(\mathrm{M}\to\overline{\mathrm{M}})$	$8.2 imes 10^{-11}$ [61]	9.5	0.76	10^{-13} [62]	51	4.1
2(1,0)	μau^{\dagger}	$BR(\tau \to \mu \gamma)$	$4.2 imes 10^{-8}$ [65]	20(2.1)	20(2.1)	$6.9 imes 10^{-9}$ [72]	32	32
		$BR(\tau \to \mu \rho)$	$1.7 imes 10^{-8}$ [66]	21(20)	5.9(1.6)	$5.5 imes 10^{-10}$ [72]	49	14
		${ m BR}(au o \mu \phi)$	$2.3 imes 10^{-8}$ [66]	14(14)	3.2(1.1)	$8.4 imes 10^{-10}$ [72]	33	7.3
		$BR(\tau \to \mu \pi)$	1.1×10^{-7} [63]	7.8	0.62	$7.1 imes 10^{-10}$ [72]	28	2.2
		$BR(\tau \to \mu K)$	$2.3 imes 10^{-8}$ [68]	14	1.1	$4.0 imes 10^{-10}$ [72]	39	3.1
		${ m BR}(au o \mu \mu ar \mu)$	$1.9 imes 10^{-8}$ [70]	16(16)	5.3(1.3)	$3.6 imes 10^{-10}$ [72]	42	14
		$BR(au o \mu e \overline{e})$	$1.8 imes 10^{-8}$ [69]	15(15)	5.3(1.2)	$2.9 imes 10^{-10}$ [72]	42	15
	$ee\mu^\dagger\mu^\dagger$	$P(M \rightarrow \overline{M})$	$8.2 imes 10^{-11}$ [61]	9.5	0.76	10^{-13} [62]	51	4.1
	$ee\mu^\dagger au^\dagger$	${ m BR}(au o eear\mu)$	$1.5 imes 10^{-8}$ [69]	16	1.3	$2.3 imes 10^{-10}$ [72]	45	3.6

C. Hagedorn

2(1,1)	$e\tau^{\dagger} \ { m BR}(au o e\gamma)$	$3.3 imes 10^{-8}$ [67]	22(2.2)	22(2.2)	$9.0 imes 10^{-9}$ [72]	30	30
	${ m BR}(au o e ho)$	$2.2 imes 10^{-8}$ [66]	20(19)	5.6(1.5)	$3.8 imes 10^{-10}$ [72]	54	15
	${ m BR}(au o e \phi)$	$2.0 imes 10^{-8}$ [66]	15(15)	3.4(1.2)	$7.4 imes 10^{-10}$ [72]	35	7.7
	${ m BR}(au o e\pi)$	$8.0 imes 10^{-8}$ [64]	8.5	0.67	$7.3 imes 10^{-10}$ [72]	27	2.2
	${ m BR}(au o eK)$	$2.6 imes 10^{-8}$ [68]	14	1.1	$4.0 imes 10^{-10}$ [72]	40	3.2
	${ m BR}(au ightarrow eear{e})$	$2.7 imes 10^{-8}$ [69]	15(15)	7.3(1.2)	$4.7 imes 10^{-10}$ [72]	40	20
	${ m BR}(au o e \mu ar\mu)$	$2.7 imes 10^{-8}$ [69]	14(14)	7.3(1.1)	$4.5 imes 10^{-10}$ [72]	38	20
	$ee\mu^{\dagger}\mu^{\dagger} \mathrm{P}(\mathrm{M} ightarrow \overline{\mathrm{M}})$	$8.2 imes 10^{-11}$ [61]	9.5	0.76	10^{-13} [62]	51	4.1
	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(\tau ightarrow \mu\mu\bar{e})$	$1.7 imes 10^{-8}$ [69]	16	1.2	$2.6 imes 10^{-10}$ [72]	44	3.5
${f 3}({f 1},{f 1})$	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(au o \mu\mu ar{e})$	$1.7 imes 10^{-8}$ [69]	16	1.2	$2.6 imes 10^{-10}$ [72]	44	3.5
	$ee\mu^{\dagger}\tau^{\dagger} \mathrm{BR}(au o eear{\mu})$	$1.5 imes 10^{-8}$ [69]	16	1.3	$2.3 imes 10^{-10}$ [72]	45	3.6
${f 4}({f 1},{f 1})$	$e\mu^{\dagger}\mu^{\dagger}\tau \ \mathrm{BR}(\tau ightarrow \mu\mu\bar{e})$	$1.7 imes 10^{-8}$ [69]	16	1.2	$2.6 imes 10^{-10}$ [72]	44	3.5
${f 4}({f 2},{f 3})$	$ee\mu^{\dagger}\mu^{\dagger} \ P(M \to \overline{M})$	$8.2 imes 10^{-11}$ [61]	9.5	0.76	10^{-13} [62]	51	4.1
${f 4}({f 3},{f 2})$	$ee\mu^{\dagger}\tau^{\dagger} \ \mathrm{BR}(\tau \to ee\bar{\mu})$	$1.5 imes 10^{-8}$ [69]	16	1.3	2.3×10^{-10} [72]	45	3.6

C. Hagedorn

$N(\delta_1,\delta_2)$		Obcommoble	Current (Λ in	TeV)	Future (Λ in TeV)		
		Observable	Constraint	Λ_{T}	Constraint	Λ_{T}	
${f 2}({f a},{f b})^{\ddagger},{f 4}({f 3},{f 2})$	$\mu(\mathbf{a},\mathbf{b})^{\ddagger},4(3,2)$ $\mu\mu au^{\dagger} au^{\dagger}$		_		0.3 fb [83]	30	
		$BR(Z \to \tau \tau \bar{\mu} \bar{\mu})$	$2 imes 10^{-3}$ [31]	0.001	10^{-12} [31]	0.25	
${f 2}({f a},{f b})^{\ddagger},{f 4}({f 1},{f 1})$	$ee au^\dagger au^\dagger$	$BR(Z \to \tau \tau \bar{e}\bar{e})$	2×10^{-3} [31]	0.001	10^{-12} [31]	0.25	
2(0,1), 3(1,1), 4(2,3)	$e\mu au^{\dagger} au^{\dagger}$	$BR(Z \to \tau \tau \bar{e}\bar{\mu})$	2×10^{-3} [31]	0.001	10^{-12} [31]	0.21	

^{\ddagger} **2**(**a**, **b**) stands for **2**(**0**, **1**), **2**(**1**, **0**) and **2**(**1**, **1**).

