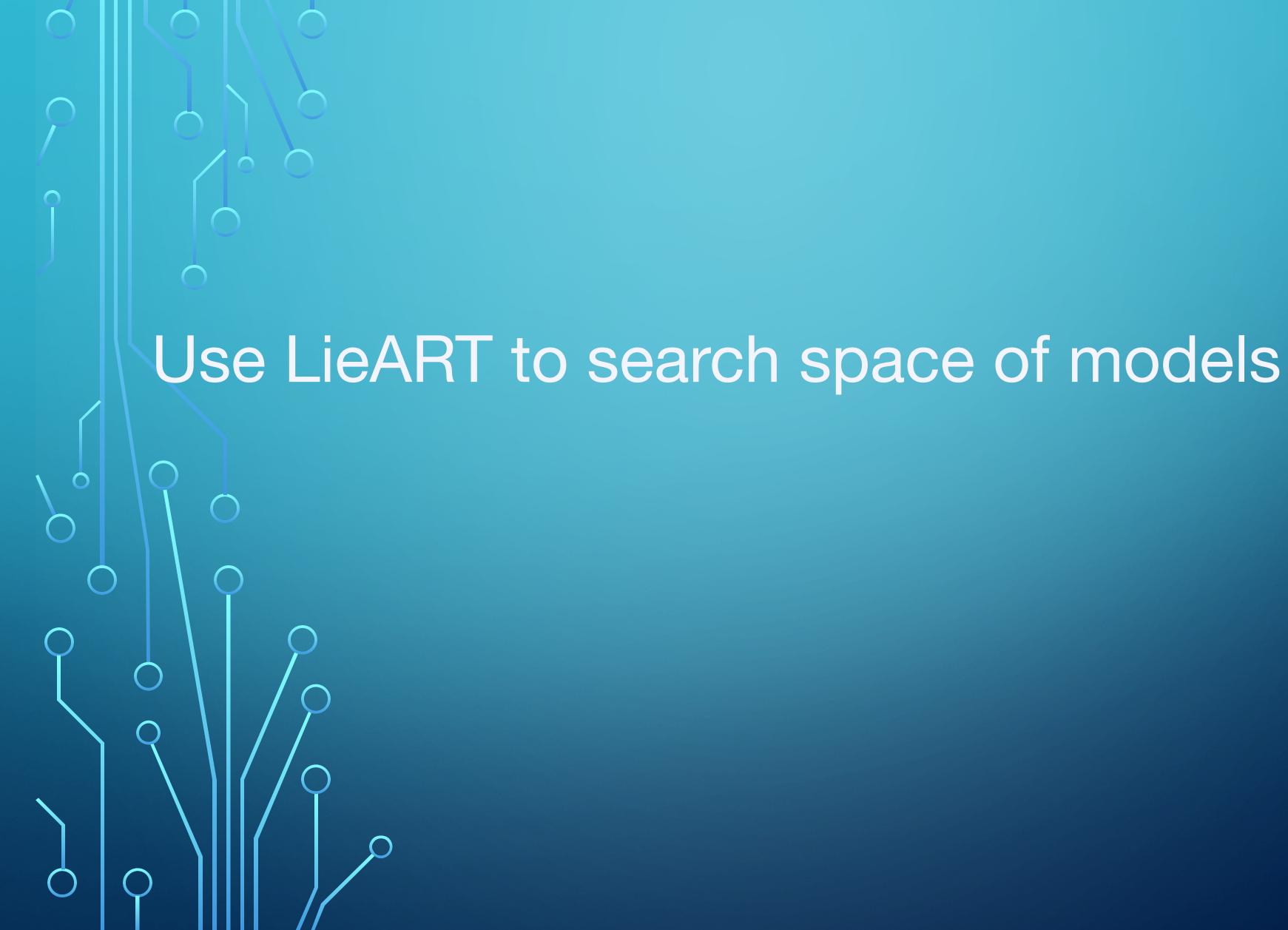
MODEL BUILDING WITH LIEART

 \bigcirc

 \mathbf{O}

 \bigcirc

 \bigcirc


 \frown

Tom Kephart Vanderbilt University

3 July 2025 Roma Tre

Work with Robert Feger, Robert Saskowski and Tori Snyder

FLASY 11

\bigcirc Either Zero or a Few Extra Chiral Fermions New Phenomenology

Use LieART to do systematically search of

SUSY and nonSUSY Models with:

Small Product Gauge Groups **Three Families**

E. Sheridan and TWK, Nuclear Physics B987, 116108 (2023)

LIEART 1.0: A MATHEMATICA APPLICATION FOR LIE ALGEBRAS AND REPRESENTATION THEORY 192, 166 (2015).

Classical and Exceptional Lie Groups

LieART commands can be called from any Mathematica program.

ROBERT FEGER AND TWK, COMPUT. PHYS. COMMUN.,

LieART 2.0 – Upgrade with irregular subgroups and many new tables. Robert Feger, TWK and Robert Saskowski,
 Communications in Computational Physics, 257, 107490 (2020)

Code freely available at HEPFORGE
and now as a Wolfram Paclet

 \bigcirc

LieART 3.0 – Planned upgrade with more new features and tables,
Plan: Include representation matrices, group invariants (Casimir and Dynkin) for irreps. Robert Feger, TWK and Tori Snyder

MAIN NEW FEATURES IN LIEART 2.0

• Even more user friendly Extended tables of properties of irreps, tensor products and branching rules Branching rules to special maximal Lie algebras through rank 15.

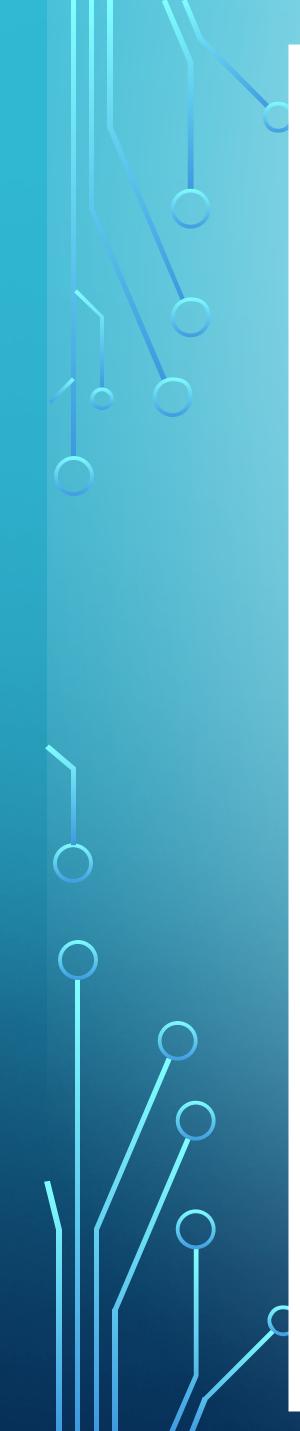
 $\land \cap$

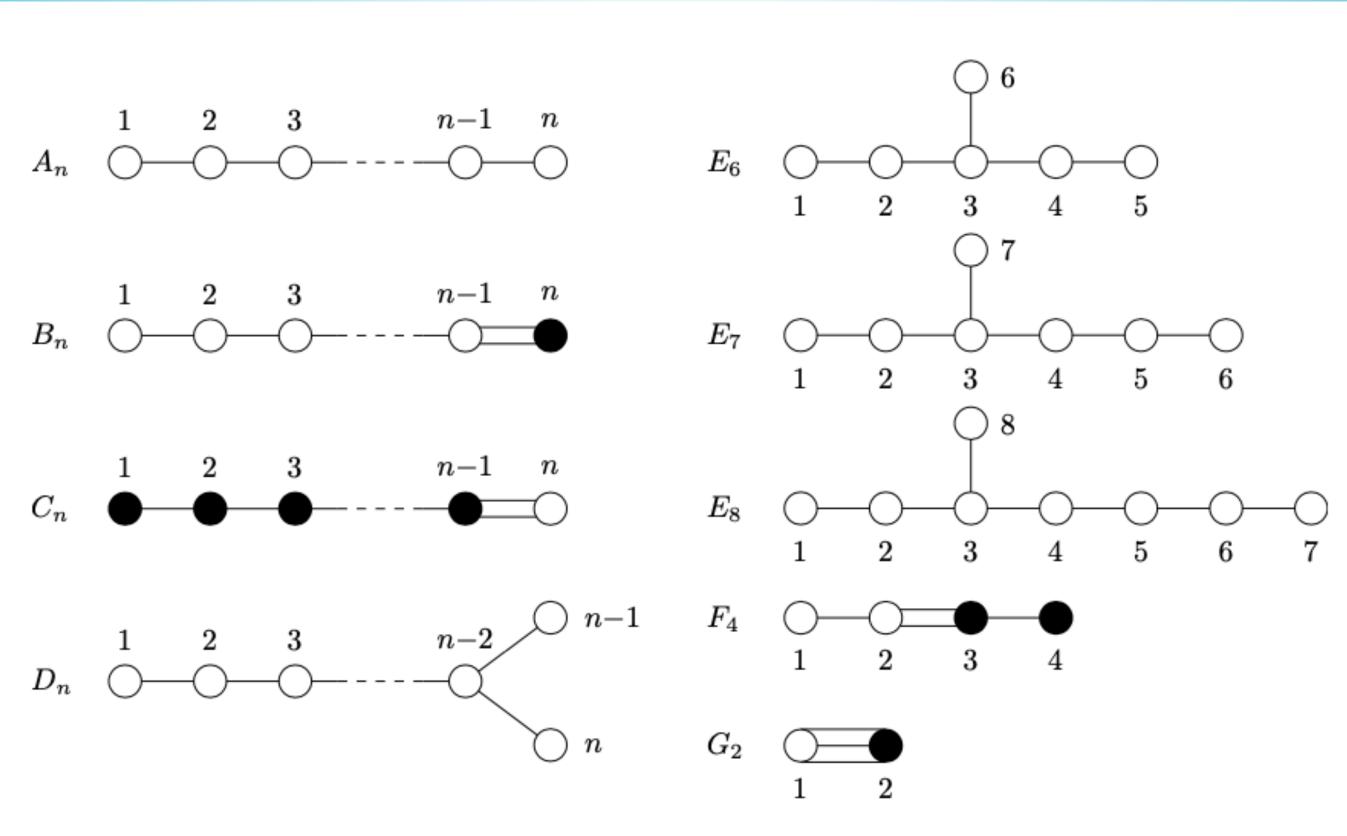
 $\left| \right\rangle$

- subalgebras for all classical and exceptional

FEATURES IN COMPANION PAPER

- Download instructions
- Automatic Installation
- Mathematica Paclet


 \bigcirc


- Manual Installation
- Documentation
- LaTeX package
- Extended tables for offline use

 \bigcirc QUICK START GUIDE • Entering Irreps • Decomposing Tensor Products Decomposition to Subalgebras • Tables of all LieART Commands

Type	Cartan	Name	Rank	
classical	\mathbf{A}_n	SU(n+1)	$n \ge 1$	
	\mathbf{B}_n	SO(2n+1)	$n \ge 3$	
	\mathbf{C}_n	$\operatorname{Sp}(2n)$	$n \ge 2$	
	D_n	$\mathrm{SO}(2n)$	$n \ge 4$	
exceptional	E_6	${ m E}_6$	6	
	E_7	E_7	7	
	E_8	E_8	8	
	${ m F}_4$	F_4	4	
	G_2	G_2	2	

Table 5.1: Classification of simple Lie algebras.

Figure 1: Dynkin Diagrams of classical and exceptional simple Lie algebras.

Description

Special unitary algebras of n+1 complex dimension Special orthogonal algebras of odd (2n+1) real dimension Symplectic algebras of even (2n) complex dimension Special orthogonal algebras of even (2n) real dimension

- Exceptional algebra of rank 6
- Exceptional algebra of rank 7
- Exceptional algebra of rank 8
- Exceptional algebra of rank 4
- Exceptional algebra of rank 2

All Maximal Subalgebras through rank 15

 \bigcirc

 \bigcirc

 \bigcirc

Table 6.3: Maximal Subalgebras

Rank	Algebra	a	Maximal subalgebras	Type
1	SU(2)	\supset	U(1)	(R)
	$(\mathrm{SU}(2),$	SO(3	3), and $Sp(2)$ are all isomorphic.)	
2	SU(3)	\supset	${ m SU}(2) \otimes { m U}(1)$	(R)
		\supset	SU(2)	(S)
	Sp(4)	\supset	$SU(2)\otimes SU(2); SU(2)\otimes U(1)$	(R)
		\supset	SU(2)	(S)
	(SO(5) i	s isoi	morphic to $Sp(4)$, and $SO(4)$ is isomorphic to $SU(2)\otimes SU(2)$.)	
	G_2	\supset	${ m SU}(3);{ m SU}(2){\otimes}{ m SU}(2)$	(R)
		\supset	SU(2)	(S)
3	SU(4)	\supset	$\mathrm{SU}(3) \otimes \mathrm{U}(1); \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$	(R)
		\supset	$\operatorname{Sp}(4); \operatorname{SU}(2) \otimes \operatorname{SU}(2)$	(S)
	SO(7)	\supset	$SU(4); SU(2) \otimes SU(2) \otimes SU(2); Sp(4) \otimes U(1)$	(R)
		\supset	G_2	(S)
	$\operatorname{Sp}(6)$	\supset	$SU(3)\otimes U(1); SU(2)\otimes Sp(4)$	(R)
		\supset	$\mathrm{SU}(2);\mathrm{SU}(2){\otimes}\mathrm{SU}(2)$	(S)
	(SO(6) i	s isoi	morphic to SU(4).)	
4	SU(5)	\supset	$SU(4) \otimes U(1); SU(3) \otimes SU(2) \otimes U(1)$	(R)
		\supset	Sp(4)	(S)
	SO(9)	\supset	$SO(8); SU(2) \otimes SU(2) \otimes Sp(4); SU(4) \otimes SU(2); SO(7) \otimes U(1)$	(R)
		\supset	$\mathrm{SU}(2);\mathrm{SU}(2){\otimes}\mathrm{SU}(2)$	(S)
	$\operatorname{Sp}(8)$	\supset	$SU(4) \otimes U(1); SU(2) \otimes Sp(6); Sp(4) \otimes Sp(4)$	(R)
		\supset	$\mathrm{SU}(2);\mathrm{SU}(2){\otimes}\mathrm{SU}(2){\otimes}\mathrm{SU}(2)$	(S)
	SO(8)	\supset	$SU(2) \otimes SU(2) \otimes SU(2) \otimes SU(2); SU(4) \otimes U(1)$	(R)
		\supset	$SU(3); SO(7); SU(2) \otimes Sp(4)$	(S)
	F_4	\supset	$SO(9); SU(3) \otimes SU(3); SU(2) \otimes Sp(6)$	(R)
		\supset	${ m SU}(2);{ m SU}(2){\otimes}{ m G}_2$	(S)
5	SU(6)	\supset	$SU(5)\otimes U(1); SU(4)\otimes SU(2)\otimes U(1); SU(3)\otimes SU(3)\otimes U(1)$	(R)
		\supset	$SU(3); SU(4); Sp(6); SU(3) \otimes SU(2)$	(S)
	SO(11)	\supset	$SO(10); SO(8) \otimes SU(2); SU(4) \otimes Sp(4); SU(2) \otimes SU(2) \otimes SO(7); SO(9) \otimes U(1)$	(R)
		\supset	SU(2)	(S)
	$\operatorname{Sp}(10)$	\supset	$SU(5)\otimes U(1); SU(2)\otimes Sp(8); Sp(4)\otimes Sp(6)$	(R)
		\supset	${ m SU}(2);{ m SU}(2){\otimes}{ m Sp}(4)$	(S)
	SO(10)	\supset	$SU(5) \otimes U(1); SU(2) \otimes SU(2) \otimes SU(4); SO(8) \otimes U(1)$	(R)
		\supset	$Sp(4); SO(9); SU(2) \otimes SO(7); Sp(4) \otimes Sp(4)$	(S)
6	SU(7)	\supset	$SU(6) \otimes U(1); SU(5) \otimes SU(2) \otimes U(1); SU(4) \otimes SU(3) \otimes U(1)$	(R)
		\supset	SO(7)	(S)
	SO(13)	\supset	$SO(12); SO(10) \otimes SU(2); SO(8) \otimes Sp(4); SU(4) \otimes SO(7);$ $SU(2) \otimes SU(2) \otimes SO(9); SO(11) \otimes U(1)$	(R)

$\begin{array}{ c c c c c c } \hline Rank & Algebra & Maximal subalgebras & & & \\ \hline & & & \\ \hline \hline & & \\ $	Type (S) (R) (R) (R) (R) (R)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 (R) (S) (R)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 (S) (R) (R)
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	 (R) (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) (R) (R) (R) (R)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 (S) (R) (S) (R) (S) (R) (S) (R) (S) (R) (R) (R)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 (R) (S) (R) (S) (R) (S) (R) (S) (R) (R) (R)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 (S) (R) (S) (R) (S) (R) (S) (R) (R) (R)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 (R) (S) (R) (R) (S) (R) (R)
$\begin{array}{l} & \operatorname{SU}(4) \otimes \operatorname{SU}(4) \otimes \operatorname{U}(1) \\ & \supset & \operatorname{SO}(8); \operatorname{Sp}(8); \operatorname{SU}(4) \otimes \operatorname{SU}(2) \\ & \operatorname{SO}(15) & \supset & \operatorname{SO}(14); \operatorname{SO}(12) \otimes \operatorname{SU}(2); \operatorname{SO}(10) \otimes \operatorname{Sp}(4); \operatorname{SO}(8) \otimes \operatorname{SO}(7); \\ & \operatorname{SU}(4) \otimes \operatorname{SO}(9); \operatorname{SU}(2) \otimes \operatorname{SU}(2) \otimes \operatorname{SO}(11); \operatorname{SO}(13) \otimes \operatorname{U}(1) \\ & \supset & \operatorname{SU}(2); \operatorname{SU}(4); \operatorname{SU}(2) \otimes \operatorname{Sp}(4) \\ & \operatorname{Sp}(14) & \supset & \operatorname{SU}(7) \otimes \operatorname{U}(1); \operatorname{SU}(2) \otimes \operatorname{Sp}(12); \operatorname{Sp}(4) \otimes \operatorname{Sp}(10); \operatorname{Sp}(6) \otimes \operatorname{Sp}(8) \\ & \supset & \operatorname{SU}(2); \operatorname{SU}(2) \otimes \operatorname{SO}(7) \\ & \supset & \operatorname{SU}(2); \operatorname{SU}(2) \otimes \operatorname{SO}(7) \\ & \operatorname{SO}(14) & \supset & \operatorname{SU}(7) \otimes \operatorname{U}(1); \operatorname{SU}(2) \otimes \operatorname{SU}(2) \otimes \operatorname{SO}(10); \operatorname{SU}(4) \otimes \operatorname{SO}(8); \\ & \operatorname{SO}(12) \otimes \operatorname{U}(1) \\ & \supset & \operatorname{Sp}(4); \operatorname{Sp}(6); \operatorname{G}_2; \operatorname{SO}(13); \operatorname{SU}(2) \otimes \operatorname{SO}(11); \operatorname{Sp}(4) \otimes \operatorname{SO}(9); \end{array}$	 (S) (R) (S) (R) (S) (R)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 (R) (S) (R) (S) (R)
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	(S) (R) (S) (R)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(R) (S) (R)
$ \begin{array}{ll} &\supset & SU(2); SU(2) \otimes SO(7) \\ &SO(14) &\supset & SU(7) \otimes U(1); SU(2) \otimes SU(2) \otimes SO(10); SU(4) \otimes SO(8); \\ &SO(12) \otimes U(1) \\ &\supset & Sp(4); Sp(6); G_2; SO(13); SU(2) \otimes SO(11); Sp(4) \otimes SO(9); \end{array} $	(S) (R)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(R)
$SO(12) \otimes U(1)$ $\supset Sp(4); Sp(6); G_2; SO(13); SU(2) \otimes SO(11); Sp(4) \otimes SO(9);$	
	(S)
$E_7 \supset E_6 \otimes U(1); SU(8); SO(12) \otimes SU(2); SU(6) \otimes SU(3)$	(R)
$ \begin{array}{ll} \supset & SU(2) \otimes F_4; G_2 \otimes Sp(6); SU(2) \otimes G_2; SU(3); SU(2) \otimes SU(2); SU(2); \\ & SU(2) \end{array} $	(S)
$ \begin{array}{lll} 8 & {\rm SU}(9) & \supset & {\rm SU}(8) \otimes {\rm U}(1); {\rm SU}(7) \otimes {\rm SU}(2) \otimes {\rm U}(1); {\rm SU}(6) \otimes {\rm SU}(3) \otimes {\rm U}(1); \\ & {\rm SU}(5) \otimes {\rm SU}(4) \otimes {\rm U}(1) \end{array} $	(R)
\supset SO(9); SU(3) \otimes SU(3)	(S)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(R)
\supset SU(2)	(S)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(R)
\supset SU(2); Sp(4); SU(2) \otimes SO(8)	(S)
$\begin{array}{rll} \mathrm{SO}(16) &\supset & \mathrm{SU}(8) \otimes \mathrm{U}(1); \ \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{SO}(12); \ \mathrm{SU}(4) \otimes \mathrm{SO}(10); \\ & & \mathrm{SO}(8) \otimes \mathrm{SO}(8); \ \mathrm{SO}(14) \otimes \mathrm{U}(1) \end{array}$	(R)
$ \begin{array}{ll} &\supset & \mathrm{SO}(9); \mathrm{SU}(2) \otimes \mathrm{Sp}(8); \mathrm{Sp}(4) \otimes \mathrm{Sp}(4); \mathrm{SO}(15); \mathrm{SU}(2) \otimes \mathrm{SO}(13); \\ &\qquad & \mathrm{Sp}(4) \otimes \mathrm{SO}(11); \mathrm{SO}(7) \otimes \mathrm{SO}(9) \end{array} $	(S)
$E_8 \supset SO(16); SU(5) \otimes SU(5); E_6 \otimes SU(3); E_7 \otimes SU(2); SU(9)$	(R)
$\supset \operatorname{G}_2 \otimes \operatorname{F}_4; \operatorname{SU}(2) \otimes \operatorname{SU}(3); \operatorname{Sp}(4); \operatorname{SU}(2); \operatorname{SU}(2); \operatorname{SU}(2)$	(S)

 \bigcirc

 \bigcirc

Rank	Algebra	ı	Maximal subalgebras	Type
9	SU(10)	С	$\begin{array}{l} \mathrm{SU}(9) \otimes \mathrm{U}(1); \ \mathrm{SU}(8) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(7) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(6) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(5) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	$SU(3)$; $SU(4)$; $SU(5)$; $Sp(4)$; $SO(10)$; $Sp(10)$; $SU(5) \otimes SU(2)$	(S)
	SO(19)	\supset	$\begin{array}{l} \mathrm{SO}(18); \ \mathrm{SO}(16) \otimes \mathrm{SU}(2); \ \mathrm{SO}(14) \otimes \mathrm{Sp}(4); \ \mathrm{SO}(12) \otimes \mathrm{SO}(7); \\ \mathrm{SO}(10) \otimes \mathrm{SO}(9); \ \mathrm{SO}(8) \otimes \mathrm{SO}(11); \ \mathrm{SU}(4) \otimes \mathrm{SO}(13); \\ \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{SO}(15); \ \mathrm{SO}(17) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	SU(2)	(S)
	$\operatorname{Sp}(18)$	\supset	$\begin{array}{l} SU(9) \otimes U(1); \ SU(2) \otimes Sp(16); \ Sp(4) \otimes Sp(14); \ Sp(6) \otimes Sp(12); \\ Sp(8) \otimes Sp(10) \end{array}$	(R)
		\supset	$SU(2); SU(2) \otimes SO(9); SU(2) \otimes Sp(6)$	(S)
	SO(18)	\supset	$SU(9)\otimes U(1); SU(2)\otimes SU(2)\otimes SO(14); SU(4)\otimes SO(12);$ $SO(8)\otimes SO(10); SO(16)\otimes U(1)$	(R)
		\supset	$\begin{array}{l} SU(2)\otimes SU(4); \ SO(17); \ SU(2)\otimes SO(15); \ Sp(4)\otimes SO(13); \\ SO(7)\otimes SO(11); \ SO(9)\otimes SO(9) \end{array}$	(S)
10	SU(11)	\supset	$\begin{array}{l} \mathrm{SU}(10) \otimes \mathrm{U}(1); \ \mathrm{SU}(9) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(8) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(7) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(6) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	SO(11)	(S)
	SO(21)	\supset	$\begin{array}{l} \mathrm{SO}(20); \ \mathrm{SO}(18) \otimes \mathrm{SU}(2); \ \mathrm{SO}(16) \otimes \mathrm{Sp}(4); \ \mathrm{SO}(14) \otimes \mathrm{SO}(7); \\ \mathrm{SO}(12) \otimes \mathrm{SO}(9); \ \mathrm{SO}(10) \otimes \mathrm{SO}(11); \ \mathrm{SO}(8) \otimes \mathrm{SO}(13); \\ \mathrm{SU}(4) \otimes \mathrm{SO}(15); \ \mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{SO}(17); \ \mathrm{SO}(19) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	$SU(2)$; $SU(2)\otimes SO(7)$; $SO(7)$; $Sp(6)$	(S)
	$\operatorname{Sp}(20)$	\supset	$\begin{array}{l} SU(10) \otimes U(1); \ SU(2) \otimes Sp(18); \ Sp(4) \otimes Sp(16); \ Sp(6) \otimes Sp(14); \\ Sp(8) \otimes Sp(12); \ Sp(10) \otimes Sp(10) \end{array}$	(R)
		\supset	$SU(2); Sp(4) \otimes Sp(4); SU(2) \otimes SO(10); SU(6)$	(S)
	SO(20)	\supset	$\begin{array}{l} SU(10) \otimes U(1); \ SU(2) \otimes SU(2) \otimes SO(16); \ SU(4) \otimes SO(14); \\ SO(8) \otimes SO(12); \ SO(10) \otimes SO(10); \ SO(18) \otimes U(1) \end{array}$	(R)
		\supset	$\begin{array}{l} SU(2)\otimes Sp(10);\ SO(19);\ SU(2)\otimes SO(17);\ Sp(4)\otimes SO(15);\\ SO(7)\otimes SO(13);\ SO(9)\otimes SO(11);\ SU(2)\otimes SU(2)\otimes Sp(4);\ SU(4) \end{array}$	(S)
11	SU(12)	\supset	$\begin{array}{l} \mathrm{SU}(11) \otimes \mathrm{U}(1); \ \mathrm{SU}(10) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(9) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(8) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(7) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1); \ \mathrm{SU}(6) \otimes \mathrm{SU}(6) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	$SO(12)$; $Sp(12)$; $SU(6) \otimes SU(2)$; $SU(4) \otimes SU(3)$	(S)
	SO(23)	Э	$\begin{array}{l} \mathrm{SO(22);\ SO(20)\otimes SU(2);\ SO(18)\otimes Sp(4);\ SO(16)\otimes SO(7);}\\ \mathrm{SO(14)\otimes SO(9);\ SO(12)\otimes SO(11);\ SO(10)\otimes SO(13);}\\ \mathrm{SO(8)\otimes SO(15);\ SU(4)\otimes SO(17);\ SU(2)\otimes SU(2)\otimes SO(19);}\\ \mathrm{SO(21)\otimes U(1)} \end{array}$	(R)
		\supset	SU(2)	(S)
	$\operatorname{Sp}(22)$	\supset	$\begin{array}{l} SU(11) \otimes U(1); \ SU(2) \otimes Sp(20); \ Sp(4) \otimes Sp(18); \ Sp(6) \otimes Sp(16); \\ Sp(8) \otimes Sp(14); \ Sp(10) \otimes Sp(12) \end{array}$	(R)
		\supset	SU(2)	(S)
	SO(22)	\supset	$\begin{array}{l} SU(11) \otimes U(1); \ SU(2) \otimes SU(2) \otimes SO(18); \ SU(4) \otimes SO(16); \\ SO(8) \otimes SO(14); \ SO(10) \otimes SO(12); \ SO(20) \otimes U(1) \end{array}$	(R)
		С	$\begin{array}{l} \mathrm{SO(21);\ SU(2)\otimes SO(19);\ Sp(4)\otimes SO(17);\ SO(7)\otimes SO(15);\\ \mathrm{SO(9)\otimes SO(13);\ SO(11)\otimes SO(11)} \end{array}$	(S)

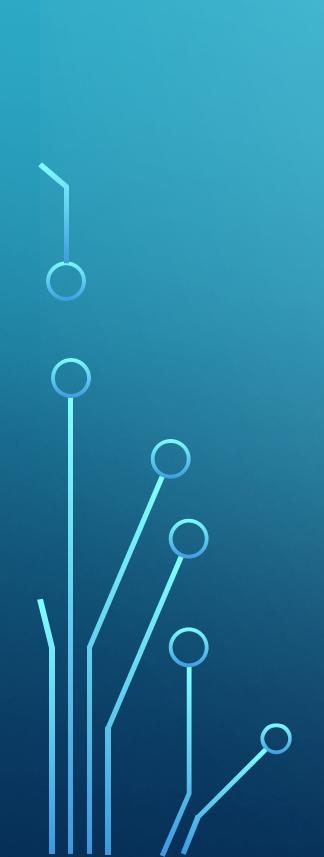
 \bigcirc

 \bigcirc

 \bigcirc

Deul	Almaha		Marimal subalachess	T
Rank	Algebra	ı	Maximal subalgebras	Type
12	SU(13)	\supset	$\begin{array}{l} \mathrm{SU}(12) \otimes \mathrm{U}(1); \ \mathrm{SU}(11) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(10) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(9) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(8) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1); \ \mathrm{SU}(7) \otimes \mathrm{SU}(6) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	SO(13)	(S)
	SO(25)	С	$\begin{array}{l} SO(24); \ SO(22) \otimes SU(2); \ SO(20) \otimes Sp(4); \ SO(18) \otimes SO(7); \\ SO(16) \otimes SO(9); \ SO(14) \otimes SO(11); \ SO(12) \otimes SO(13); \\ SO(10) \otimes SO(15); \ SO(8) \otimes SO(17); \ SU(4) \otimes SO(19); \\ SU(2) \otimes SU(2) \otimes SO(21); \ SO(23) \otimes U(1) \end{array}$	(R)
		\supset	${ m SU}(2);{ m Sp}(4){\otimes}{ m Sp}(4)$	(S)
	$\operatorname{Sp}(24)$	\supset	$\begin{array}{l} SU(12) \otimes U(1); \ SU(2) \otimes Sp(22); \ Sp(4) \otimes Sp(20); \ Sp(6) \otimes Sp(18); \\ Sp(8) \otimes Sp(16); \ Sp(10) \otimes Sp(14); \ Sp(12) \otimes Sp(12) \end{array}$	(R)
		\supset	$\mathrm{SU}(2);\mathrm{SU}(2) \otimes \mathrm{SU}(2) \otimes \mathrm{Sp}(6);\mathrm{SU}(2) \otimes \mathrm{Sp}(8);\mathrm{SU}(4) \otimes \mathrm{Sp}(4)$	(S)
	SO(24)	\supset	$\begin{array}{l} SU(12) \otimes U(1); \ SU(2) \otimes SU(2) \otimes SO(20); \ SU(4) \otimes SO(18); \\ SO(8) \otimes SO(16); \ SO(10) \otimes SO(14); \ SO(12) \otimes SO(12); \ SO(22) \otimes U(1) \end{array}$	(R)
		С	$\begin{array}{l} \mathrm{SO(23);\ SU(2)\otimes SO(21);\ Sp(4)\otimes SO(19);\ SO(7)\otimes SO(17);}\\ \mathrm{SO(9)\otimes SO(15);\ SO(11)\otimes SO(13);\ Sp(6)\otimes Sp(4);\ SU(2)\otimes SO(8);}\\ \mathrm{SU(5)} \end{array}$	(S)
13	SU(14)	\supset	$\begin{array}{l} \mathrm{SU}(13) \otimes \mathrm{U}(1); \ \mathrm{SU}(12) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(11) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(10) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(9) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1); \ \mathrm{SU}(8) \otimes \mathrm{SU}(6) \otimes \mathrm{U}(1); \\ \mathrm{SU}(7) \otimes \mathrm{SU}(7) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	$SO(14)$; $Sp(14)$; $SU(7)\otimes SU(2)$	(S)
	SO(27)	С	$SO(26); SO(24) \otimes SU(2); SO(22) \otimes Sp(4); SO(20) \otimes SO(7);$ $SO(18) \otimes SO(9); SO(16) \otimes SO(11); SO(14) \otimes SO(13);$ $SO(12) \otimes SO(15); SO(10) \otimes SO(17); SO(8) \otimes SO(19);$ $SU(4) \otimes SO(21); SU(2) \otimes SU(2) \otimes SO(23); SO(25) \otimes U(1)$	(R)
		\supset	$SU(2)$; $SU(3)$; $SO(7)$; $SU(2) \otimes SO(9)$	(S)
	$\operatorname{Sp}(26)$	\supset	$\begin{array}{l} SU(13) \otimes U(1); \ SU(2) \otimes Sp(24); \ Sp(4) \otimes Sp(22); \ Sp(6) \otimes Sp(20); \\ Sp(8) \otimes Sp(18); \ Sp(10) \otimes Sp(16); \ Sp(12) \otimes Sp(14) \end{array}$	(R)
		\supset	SU(2)	(S)
	SO(26)	\supset	$\begin{array}{l} SU(13) \otimes U(1); \ SU(2) \otimes SU(2) \otimes SO(22); \ SU(4) \otimes SO(20); \\ SO(8) \otimes SO(18); \ SO(10) \otimes SO(16); \ SO(12) \otimes SO(14); \\ SO(24) \otimes U(1) \end{array}$	(R)
		С	$SO(25); SU(2) \otimes SO(23); Sp(4) \otimes SO(21); SO(7) \otimes SO(19); SO(9) \otimes SO(17); SO(11) \otimes SO(15); SO(13) \otimes SO(13); F_4$	(S)
14	SU(15)	\supset	$\begin{array}{l} \mathrm{SU}(14) \otimes \mathrm{U}(1); \ \mathrm{SU}(13) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1); \ \mathrm{SU}(12) \otimes \mathrm{SU}(3) \otimes \mathrm{U}(1); \\ \mathrm{SU}(11) \otimes \mathrm{SU}(4) \otimes \mathrm{U}(1); \ \mathrm{SU}(10) \otimes \mathrm{SU}(5) \otimes \mathrm{U}(1); \\ \mathrm{SU}(9) \otimes \mathrm{SU}(6) \otimes \mathrm{U}(1); \ \mathrm{SU}(8) \otimes \mathrm{SU}(7) \otimes \mathrm{U}(1) \end{array}$	(R)
		\supset	$SO(15); SU(5) \otimes SU(3); SU(3); SU(3); SU(5); SU(6)$	(S)
	SO(29)	Э	$\begin{array}{l} SO(28); SO(26) \otimes SU(2); SO(24) \otimes Sp(4); SO(22) \otimes SO(7); \\ SO(20) \otimes SO(9); SO(18) \otimes SO(11); SO(16) \otimes SO(13); \\ SO(14) \otimes SO(15); SO(12) \otimes SO(17); SO(10) \otimes SO(19); \\ SO(8) \otimes SO(21); SU(4) \otimes SO(23); SU(2) \otimes SU(2) \otimes SO(25); \\ SO(27) \otimes U(1) \end{array}$	(R)
		\supset	SU(2)	(S)
	$\operatorname{Sp}(28)$	С	$\begin{array}{l} SU(14) \otimes U(1); \ SU(2) \otimes Sp(26); \ Sp(4) \otimes Sp(24); \ Sp(6) \otimes Sp(22); \\ Sp(8) \otimes Sp(20); \ Sp(10) \otimes Sp(18); \ Sp(12) \otimes Sp(16); \ Sp(14) \otimes Sp(14) \end{array}$	(R)

 \mathbf{O}


 \bigcirc

 \bigcirc

 $^{\prime}$

Rank	Algebra		Maximal subalgebras	Туре
	0	\supset	$SU(2); SO(7)\otimes Sp(4)$	(S)
	SO(28)	С	$\begin{array}{l} SU(14)\otimes U(1);\ SU(2)\otimes SU(2)\otimes SO(24);\ SU(4)\otimes SO(22);\\ SO(8)\otimes SO(20);\ SO(10)\otimes SO(18);\ SO(12)\otimes SO(16);\\ SO(14)\otimes SO(14);\ SO(26)\otimes U(1) \end{array}$	(R)
		С	$\begin{array}{l} SO(27); SU(2) \otimes SO(25); Sp(4) \otimes SO(23); SO(7) \otimes SO(21); \\ SO(9) \otimes SO(19); SO(11) \otimes SO(17); SO(13) \otimes SO(15); \\ SU(2) \otimes SU(2) \otimes SO(7) \end{array}$	(S)
15	SU(16)	С	$\begin{array}{l} SU(15)\otimes U(1);\ SU(14)\otimes SU(2)\otimes U(1);\ SU(13)\otimes SU(3)\otimes U(1);\\ SU(12)\otimes SU(4)\otimes U(1);\ SU(11)\otimes SU(5)\otimes U(1);\\ SU(10)\otimes SU(6)\otimes U(1);\ SU(9)\otimes SU(7)\otimes U(1);\ SU(8)\otimes SU(8)\otimes U(1) \end{array}$	(R)
		\supset	$SO(16)$; $Sp(16)$; $SO(10)$; $SU(8) \otimes SU(2)$; $SU(4) \otimes SU(4)$	(S)
	SO(31)	С	$\begin{array}{l} SO(30); \ SO(28) \otimes SU(2); \ SO(26) \otimes Sp(4); \ SO(24) \otimes SO(7); \\ SO(22) \otimes SO(9); \ SO(20) \otimes SO(11); \ SO(18) \otimes SO(13); \\ SO(16) \otimes SO(15); \ SO(14) \otimes SO(17); \ SO(12) \otimes SO(19); \\ SO(10) \otimes SO(21); \ SO(8) \otimes SO(23); \ SU(4) \otimes SO(25); \\ SU(2) \otimes SU(2) \otimes SO(27); \ SO(29) \otimes U(1) \end{array}$	(R)
		\supset	SU(2)	(S)
	$\operatorname{Sp}(30)$	\supset	$\begin{array}{l} SU(15)\otimes U(1);\ SU(2)\otimes Sp(28);\ Sp(4)\otimes Sp(26);\ Sp(6)\otimes Sp(24);\\ Sp(8)\otimes Sp(22);\ Sp(10)\otimes Sp(20);\ Sp(12)\otimes Sp(18);\ Sp(14)\otimes Sp(16) \end{array}$	(R)
		\supset	$SU(2); SU(2) \otimes Sp(10); Sp(4) \otimes Sp(6)$	(S)
	SO(30)		$\begin{array}{l} SU(15)\otimes U(1);\ SU(2)\otimes SU(2)\otimes SO(26);\ SU(4)\otimes SO(24);\\ SO(8)\otimes SO(22);\ SO(10)\otimes SO(20);\ SO(12)\otimes SO(18);\\ SO(14)\otimes SO(16);\ SO(28)\otimes U(1) \end{array}$	(R)
		C	$\begin{array}{l} SO(29); SU(2) \otimes SO(27); Sp(4) \otimes SO(25); SO(7) \otimes SO(23); \\ SO(9) \otimes SO(21); SO(11) \otimes SO(19); SO(13) \otimes SO(17); \\ SO(15) \otimes SO(15); SU(2) \otimes SO(10); Sp(4) \otimes SU(4) \end{array}$	(S)

O

100

 \bigcirc

TABLE OF TABLES

 \bigcirc

 \bigcirc

 \bigcirc

	Irrep Pro	perties	Tensor P	roducts	Branching	g Rules
Algebra	Number	Page	Number	Page	Number	Page
SU(2)	A.2	44	A.61	92	A.120	136
SU(3)	A.3	45	A.62	93	A.121	137
SU(4)	A.4	47	A.63	95	A.122	139
SU(5)	A.5	49	A.64	97	A.123	141
SU(6)	A.6	51	A.65	99	A.124	143
SU(7)	A.7	53	A.66	101	A.125	147
SU(8)	A.8	54	A.67	102	A.126	150
SU(9)	A.9	55	A.68	103	A.127	154
SU(10)	A.10	55	A.69	103	A.128	157
SU(11)	A.11	56	A.70	104	A.129	162
SU(12)	A.12	56	A.71	104	A.130	164
SU(13)	A.13	56	A.72	104	A.131	167
SU(14)	A.14	57	A.73	104	A.132	169
SU(15)	A.15	57	A.74	105	A.133	171
SU(16)	A.16	57	A.75	105	A.134	174
SO(7)	A.17	58	A.76	106	A.135	176
SO(8)	A.18	60	A.77	108	A.136	185
SO(9)	A.19	62	A.78	110	A.137	205
SO(10)	A.20	64	A.79	112	A.138	214
SO(11)	A.21	66	A.80	114	A.139	221
SO(12)	A.22	67	A.81	115	A.140	225
SO(13)	A.23	68	A.82	116	A.141	236
SO(14)	A.24	68	A.83	116	A.142	242
SO(15)	A.25	69	A.84	117	A.143	248
SO(16)	A.26	69	A.85	117	A.144	254
SO(17)	A.27	70	A.86	117	A.145	258
SO(18)	A.28	70	A.87	118	A.146	261
SO(19)	A.29	70	A.88	118	A.147	264
SO(20)	A.30	71	A.89	119	A.148	267

SO(21)	A.31	71	A.90	119	A.149	271
SO(22)	A.32	71	A.91	120	A.150	275
SO(23)	A.33	72	A.92	120	A.151	278
SO(24)	A.34	72	A.93	120	A.152	281
SO(25)	A.35	73	A.94	121	A.153	285
SO(26)	A.36	73	A.95	121	A.154	289
SO(27)	A.37	74	A.96	121	A.155	293
SO(28)	A.38	74	A.97	121	A.156	298
SO(29)	A.39	75	A.98	121	A.157	302
SO(30)	A.40	75	A.99	122	A.158	306
SO(31)	A.41	75	A.100	122	A.159	310
Sp(4)	A.42	76	A.101	123	A.160	314
$\operatorname{Sp}(6)$	A.43	78	A.102	124	A.161	316
$\operatorname{Sp}(8)$	A.44	80	A.103	125	A.162	320
$\operatorname{Sp}(10)$	A.45	81	A.104	126	A.163	324
$\operatorname{Sp}(12)$	A.46	82	A.105	127	A.164	327
$\operatorname{Sp}(14)$	A.47	83	A.106	127	A.165	332
$\operatorname{Sp}(16)$	A.48	83	A.107	128	A.166	335
$\operatorname{Sp}(18)$	A.49	84	A.108	128	A.167	339
$\operatorname{Sp}(20)$	A.50	84	A.109	129	A.168	342
$\operatorname{Sp}(22)$	A.51	84	A.110	129	A.169	344
$\operatorname{Sp}(24)$	A.52	85	A.111	129	A.170	346
$\operatorname{Sp}(26)$	A.53	85	A.112	129	A.171	349
$\operatorname{Sp}(28)$	A.54	85	A.113	130	A.172	351
$\operatorname{Sp}(30)$	A.55	85	A.114	130	A.173	354
E_6	A.56	86	A.115	131	A.174	358
${ m E_7}$	A.57	87	A.116	132	A.175	363
E_8	A.58	87	A.117	132	A.176	368
F_4	A.59	88	A.118	133	A.177	371
G_2	A.60	90	A.119	135	A.178	376
		Table A	.1: Table of t	ables		

100

 \bigcirc

١

 \bigcirc

In[38]:= « LieART `Tables `

In[39]:= BranchingRulesTable[E8, {SU2}, 1, MaxDim -> 147250]

	E ₈	\rightarrow	SU(2)
	248	=	3 + 11 + 15 + 19 + 23 + 27 +
out[38]:=	3875	=	2(1) + 3(5) + 7 + 4(9) + 2(11) + 5(27) + 7(29) + 5(31) + 6(33) + 4(49) + 2(51) + 3(53) + 2(55) + 6(33) + 6(3
	27000	=	7(1)+3+13(5)+7(7)+19(9)+14 35(25)+28(27)+36(29)+28(3) 28(45)+22(47)+25(49)+18(5) 11(65)+7(67)+8(69)+5(71)+16
	30380	=	10(3)+6(5)+17(7)+14(9)+24(3)+40(27)+34(29)+40(3)+27(45)+29(47)+24(49)+25(5)+29(65)+10(67)+6(69)+7(71)+26(69)+2
	147250	=	8(1) + 22(3) + 41(5) + 49(7) + 133(21) + 138(23) + 144(25) + 144(39) + 144(41) + 134(43) + 144(39) + 144(41) + 134(43) + 148(57) + 81(59) + 73(61) + 66(66) + 66
$\left(\right) \right)$			

29 + 35 + 39 + 47+ 6(13) + 3(15) + 6(17) + 4(19) + 7(21) + 4(23) + 7(25) + 6(17) + 6(+4(35)+7(37)+4(39)+5(41)+3(43)+5(45)+3(47)++2(57) + 59 + 2(61) + 63 + 65 + 69 + 7314(11)+25(13)+19(15)+29(17)+23(19)+33(21)+26(23)+31) + 35(33) + 28(35) + 34(37) + 27(39) + 31(41) + 24(43) +(51) + 21(53) + 15(55) + 18(57) + 12(59) + 14(61) + 9(63) + 10(51) + 10(5+6(73)+3(75)+4(77)+2(79)+3(81)+83+2(85)+89+934(11)+22(13)+30(15)+26(17)+35(19)+31(21)+37(23)+31) + 34(33) + 38(35) + 34(37) + 36(39) + 30(41) + 33(43) + 33(4) + 33(4)51) + 19(53) + 21(55) + 16(57) + 16(59) + 13(61) + 13(63) + 16(59) + 13(61) + 13(63) + 16(59) + 16(5+5(73)+5(75)+2(77)+3(79)+2(81)+2(83)+85+87+91-69(9) + 80(11) + 93(13) + 102(15) + 118(17) + 121(19) +147(27) + 153(29) + 149(31) + 153(33) + 151(35) + 149(37) +132(45) + 124(47) + 118(49) + 110(51) + 105(53) + 94(55) +63) + 61(65) + 51(67) + 47(69) + 41(71) + 36(73) + 30(75) +5(83) + 12(85) + 10(87) + 9(89) + 6(91) + 5(93) + 4(95) + 6(91) + 5(93) + 6(95) + 6(+107

Click on A.174 to find:

 \bigcirc

 \bigcirc

 \bigcirc

E_6	\rightarrow	F_4 (S)
27	=	1 + 26
78	=	${\bf 26+52}$
351	=	26 + 52 + 273
351'	=	1 + 26 + 324
650	=	${\bf 1}+2({\bf 26})+{\bf 273}+{\bf 324}$
1728	=	${\bf 26} + {\bf 52} + {\bf 273} + {\bf 324} + {\bf 1053}$
2430	=	${\bf 324} + {\bf 1053} + {\bf 1053'}$
2925	=	${\bf 52} + 2({\bf 273}) + {\bf 1053} + {\bf 1274}$
3003	=	${\bf 1} + {\bf 26} + {\bf 324} + {\bf 2652}$
$\boldsymbol{5824}$	=	${\bf 26} + {\bf 52} + {\bf 273} + {\bf 324} + {\bf 1053} + {\bf 4096}$
7371	=	26 + 52 + 2(273) + 324 + 1053 + 1274
7722	=	${\bf 1} + 2({\bf 26}) + {\bf 273} + 2({\bf 324}) + {\bf 2652} + {\bf 40}$
17550	=	$273 + 324 + 2(1053) + \mathbf{1053'} + 1274 - \mathbf{1053'} + \mathbf{1053''} + \mathbf{1053'''} + \mathbf{1053'''} + \mathbf{1053'''} + \mathbf{1053''''} + 1053''''''''''''''''''''''''''''''''''''$
19305	=	26 + 52 + 273 + 324 + 1053 + 2652 +

Tables from appendix are in supplementary material of paper.

74 + 4096096 + 4096 + 8424+ 4096 + 10829

 \bigcirc

BENCHMARKS

 \bigcirc

 $/ \circ \cap$

 \bigcirc

As an example for subalgebra decomposition of a large irrep we decompose the **6696000** of E_8 to $G_2 \otimes F_4$:

In[49]:= Timing[DecomposeIrrep[Irrep[E8][6696000], ProductAlgebra[G2, F4]]]

 $\{1066.14, 2(7,1) + 2(14,1) + (1,26) + (27,1) + 6(7,26) + 5(14,26) + 2(1,52) + 6(27,26) + 3(7,52) + 3(7,52$ 2(64,1) + 3(14,52) + 2(77,1) + 5(27,52) + 5(64,26) + 4(77,26) + (77',26) + 3(64,52) + 2(77,52) + 5(64,26) + $({\bf 77}',{\bf 52}) + ({\bf 189},{\bf 1}) + ({\bf 182},{\bf 26}) + 2({\bf 189},{\bf 26}) + ({\bf 182},{\bf 52}) + ({\bf 189},{\bf 52}) + 3({\bf 1},{\bf 273}) + 6({\bf 7},{\bf 273}) + 4({\bf 14},{\bf 273}) + 6({\bf 7},{\bf 273}) + 6({\bf 7},{\bf$ 8(27, 273) + (1, 324) + 6(7, 324) + 5(64, 273) + 5(14, 324) + 3(77, 273) + (77', 273) + 4(27, 324) + 5(14, 324) + 3(14,3(64, 324) + 3(77, 324) + (182, 273) + (189, 273) + (189, 324) + 2(1, 1053) + 5(7, 1053) + (7, 1053') + (7,3(14,1053) + (14,1053') + 5(27,1053) + 3(64,1053) + 2(77,1053) + (77,1053') + (189,1053) + (18Out[48]:= 2(1, 1274) + 2(7, 1274) + 2(14, 1274) + 3(27, 1274) + (64, 1274) + (77, 1274) + (77', 127'2(7, 2652) + (14, 2652) + (27, 2652) + 2(1, 4096) + 5(7, 4096) + 3(14, 4096) + 4(27, 4096) + 3(14, 406) + 3(14, 406) + 3(14, 406) + 3(14, 406) + 3(14, 406) + 3(14, 406) + 3(14, 406) + 3(14, 406) +2(64, 4096) + (77, 4096) + 2(7, 8424) + (14, 8424) + (27, 8424) + (64, 8424) + (1, 10829) + (7(14, 10829) + (27, 10829) + (1, 19278) + (7, 19278) + (27, 19278) + (7, 19448) + (14(1, 34749) + (7, 34749)

SU(2) IRREP MATRICES

LieART output:

 \bigcirc

 \bigcirc

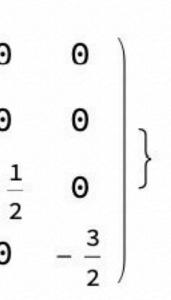
 \bigcirc

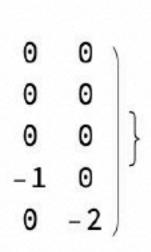
In

Out

Tori Snyder

In[75]:= RepresentationMatrices[3]


$$\mathsf{Out}[75] = \left\{ \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\}$$


In[77]:= RepresentationMatrices[4]

$$t[77] = \left\{ \begin{pmatrix} 0 & \frac{\sqrt{3}}{2} & 0 & 0 \\ \frac{\sqrt{3}}{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{\sqrt{3}}{2} \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \frac{i}{\sqrt{3}} & 0 & 0 \\ -\frac{i}{\sqrt{3}} & 0 & i & 0 \\ 0 & -i & 0 & \frac{i}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{i}{\sqrt{3}} & 2 \\ 0 & 0 & -\frac{i}{\sqrt{3}} & 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{i}{2} \\ 0 & 0 & 0 \end{pmatrix} \right\}$$

In[76]:= RepresentationMatrices[5]

OTHER IRREP MATRICES

 \bigcirc

 \bigcirc

- From the N of SU(N) we have NxN = S + A where Dim(S) = N(N+1)/2 and Dim(A) = N(N-1)/2
- Adjoints of any G since one representation of the matrices are the structure constants.
- In principle all irreps can be gotten from products of fundamentals and they conjugates.

FUN WITH LIEART • SU(2) irreps have dimensions: 1, 2, 3, 4, 5,... 21bar, 24, 27, ...

• There is a sequence of SU(3) irreps (0,0), (1,1), (2,2), (3,3),... with dim 1, 8, 27, 64,... = 1^3 , 2^3 , 3^3 , 4^3 , 5^3 , ...

• Others look more random. E.g., SU(3) irreps are of dim:1, 3, 3bar, 6, 6bar, 8, 10, 10bar, 15, 15bar 15', 15'bar, 21,

where [a,a,a,a,...a] has dim (a+1) p G2, F4, E6, E7 and E8.

 \bigcirc

• E.g., $Irrep[E8][9,9,9,9,9,9,9,9] = 10^{120}$ which is an exact result !!

- Similar result hold for any classical or exceptional group
- All have series of irreps 1p, 2p, 3p, 4p, ... where for A_n , p $= 1, 3, 6, 10, \dots$ (binomial coeff) for $n = 1, 2, 3, 4, \dots$ for B_n and $C_n p = n2$, for D_n , p = 2X the binomial coeff of A_n and for the exceptionals p = 6, 24, 36, 63 and 120 for

ONE-LINE PROOF FROM WEYL DIM FORMULA

First we rewrite the Weyl's dimension formula for a general irrep Λ in the form

 $\dim(\Lambda) =$

where Δ^+ is the set of positive roots α . Recall that in the Dynkin bases one has $\delta = (1, 1, 1, ..., 1)$. Now for the specific irrep $\Lambda = (a, a, a, ..., a) = a\delta$ that means we have

$$\dim(\Lambda) = \frac{\prod_{\alpha \in \Delta^+} (a+1)(\delta, \alpha)}{\prod_{\alpha \in \Delta^+} (\delta, \alpha)} = \frac{\prod_{\alpha \in \Delta^+} (a+1)}{\prod_{\alpha \in \Delta^+} (1)} = (a+1)^p$$
(17)

where p is the number of positive roots, i.e., the number of elements in the set Δ +, which agrees with the numbers in the examples above.

$$\frac{\prod_{\alpha \in \Delta^+} (\Lambda + \delta, \alpha)}{\prod_{\alpha \in \Delta^+} (\delta, \alpha)}$$
(16)

ENTERING IRREPS \frown

 \bigcirc

 \bigcirc

- $1 \circ 0$ class:
 - In[2]:= Irrep[A][0,1,0,0]//FullForm
 - Out[2]:= Irrep[A][0,1,0,0]
 - In[3]:= Irrep[A][0,1,0,0]//StandardForm
 - Out[3]:=(0100)
 - TraditionalForm (default):
 - ln[4]:= Irrep[A][0,1,0,0]

• Out[4]:= 10

• Entering the 10 of SU(5) by its Dynkin label and algebra

ENTERING IRREPS

 \bigcirc

 \bigcirc

- algebra by its Dynkin classification in A_4 :
- In[6]:= Irrep[A4][10]//InputForm
- Out[6]:= Irrep[A][0,1,0,0]
- In[7]:= Irrep[SU5][10]//InputForm
- Out[7]:= Irrep[A][0,1,0,0]

• Entering the 10 of SU(5) by its dimensional name specifying the

• The traditional name of the algebra SU(5) may also be used:

DECOMPOSING TENSOR PRODUCTS

- Decompose the tensor product $27 \otimes 27$ bar of E6:
- In[14]:=DecomposeProduct[Irrep[E6][27],Irrep[E6][Bar[27]]]
- Out[14]:= 1+78+650

 \cap

 $\land \land \cap$

 \bigcirc

• Decompose the tensor product $3 \otimes 3 \otimes 3$ of SU(3): • n[15]:= DecomposeProduct[Irrep[SU3][3],Irrep[SU3][3],Irrep[SU3][3]] \mathcal{O} ut[15]:= 1+2(8)+10

DECOMPOSITION TO SUBALGEBRAS (VIA PROJECTION MATRICES)

• Decompose the 16 of SO(10) to $SU(5)\otimes U(1)$: • Out[26] := (1)(-5)+(5bar)(3)+(10)(-1)

 \bigcirc

• E.g., E₇ has two SU(2) special maximal subalgebras • In[34]:= DecomposeIrrep[Irrep[E7][56], SU2, 1] • Out[34] = 10 + 18 + 28•/n[35]:= DecomposeIrrep[Irrep[E7][56], SU2, 2] • Out[35] = 6 + 12 + 16 + 22

In[26]:= DecomposeIrrep[Irrep[\$010][16],ProductAlgebra[\$U5,U1]]

CONCLUSIONS

 \bigcirc

 We continue to develop LieART to make it more: • user friendly \bigcirc • versatile • comprehensive • NEXT: Irrep matrices • SuperLieART ? • LieART with finite groups

Thank you!!!

String Inspired Search for nonSUSY Models with:

Small product gauge groups

- Either Zero or a Few Extra Chiral Fermions
 - New Phenomenology

We are interested in the nonSUSY ($\mathcal{N} = 0$) case. Fermions are in quivers (bifundamentals). E.g., for $SU(N)^3$ \bigcirc $(N, \bar{N}, 1) + (1, N, \bar{N}) + (\bar{N}, 1, N)$ Scalars are in adjoints, etc. E. Sheridan and TWK, Nuclear Physics B987, 116108 (2023)

 \bigcirc $AdS_5 \times S^5$ with a discrete group Γ $SU(n_1N)^{q_1} \times SU(n_2N)^{q_2} \times \ldots$ where the n_i s are the dimensions After spontaneous symmetry breaking (to diag subgroups) we can arrive at b fundamental models with gauge groups of the form

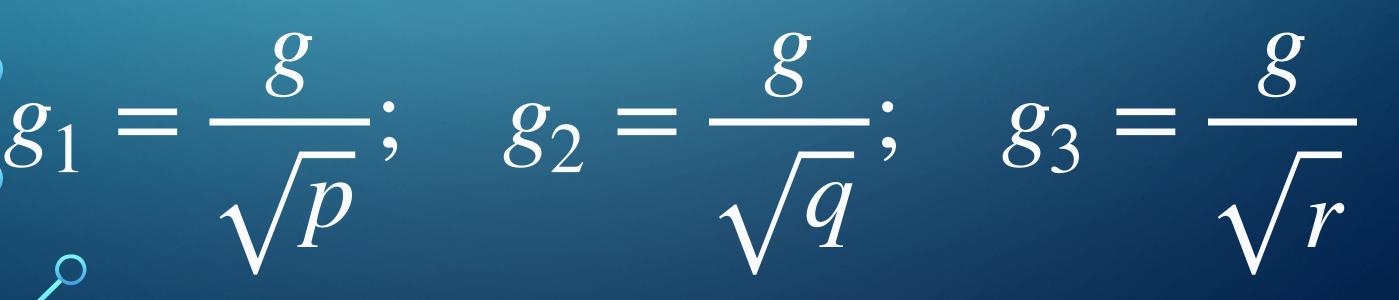
Class of bifundamental models inspired by orbifolding

generates 4D theories with gauge groups

Kachru and Silverstein 1998

of the irreducible representations (irreps) of Γ

Lawrence, Nekrasov and Vafa 1998


SU(a)XSU(b)XSU(c)

Breaking a symmetry $SU(3)^n = SU(3)^p \times SU(3)^q \times SU(3)^r$ to $SU(3)_1 \times SU(3)_2 \times SU(3)_3$

 \bigcirc

the gauge coupling constants adjust to

Well studied quiver models: Pati-Salam Model 1974 $SU(4) \times SU(2) \times SU(2)$ \frown Families in $(4,\bar{2},1) + (\bar{4},1,2) + (1,2,\bar{2})$ Trinification Model de Rújula, Georgi and Glashow 1984 $SU(3) \times SU(3) \times SU(3)$ $(3,\bar{3},1) + (1,3,\bar{3}) + (\bar{3},1,3)$

Quiver models with 3 automatic families \bigcirc 334 Model TWK, Shafi 2001; Lee, TWK, Shafi 2006 $SU(4) \times SU(3) \times SU(3)$ $3(4,\bar{3},1) + 3(\bar{4},1,3) + 4(1,3,\bar{3})$ Coefficients are required to cancel gauge anomalies Contains 3 family PS model, three family trinification model and several other possibilities

334 MODEL EXAMPLE \bigcirc \frown 334 —> 321111 —> 321 \bigcirc SEVERAL WAYS TO EMBED U(1) HYPERCHARGE (Y) IN 321 \bigcirc \bigcirc GIVES DIFFERENT SUBMODELS \bigcirc EACH WITH DIFFERENT PHENO

Fermion families in:

i.e., $(27 \rightarrow 16 \rightarrow (\overline{5} + 10 + 1))$ for the chiral part up to flipping) Number of gauge generators

 \bigcirc

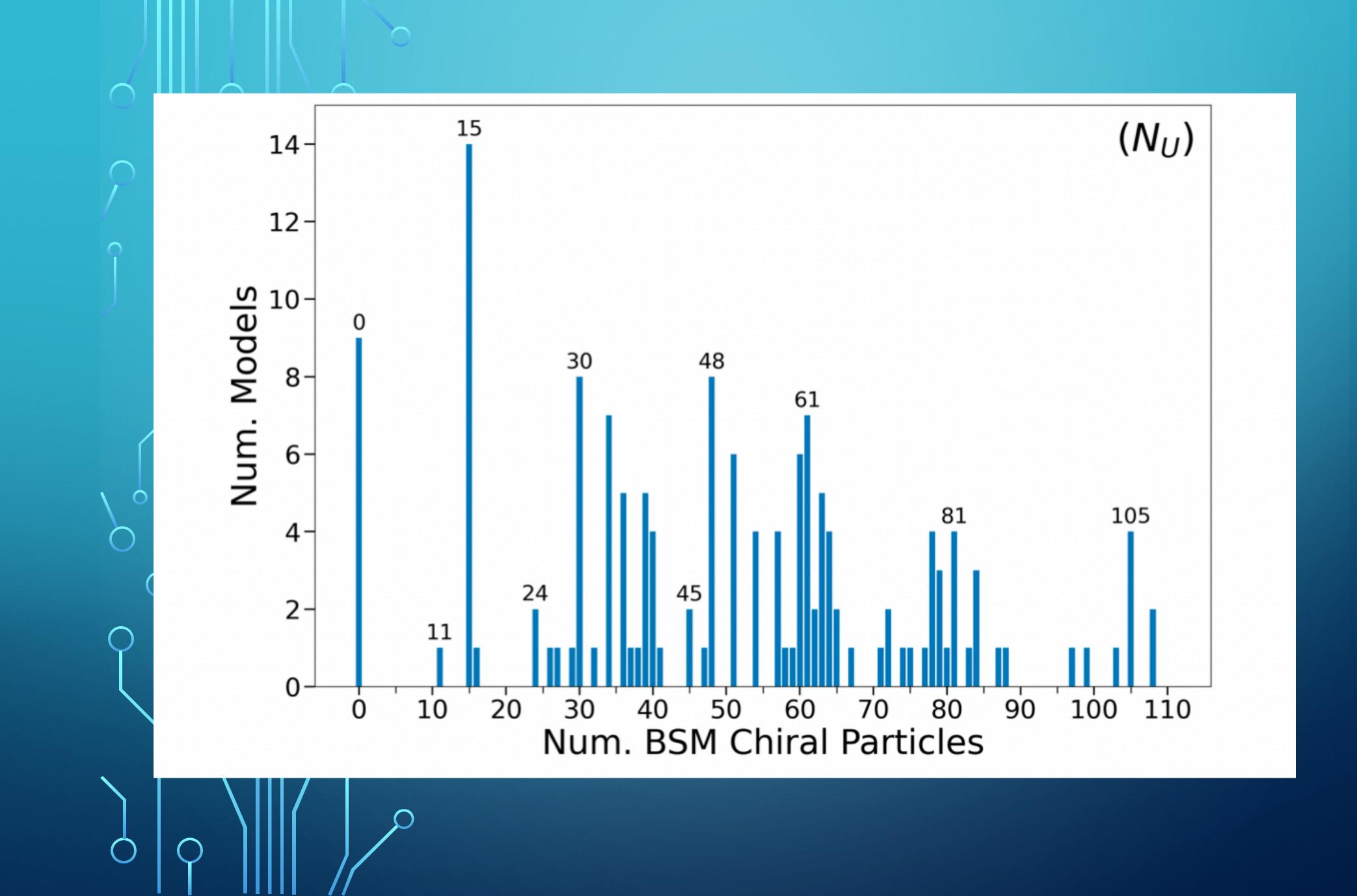
0

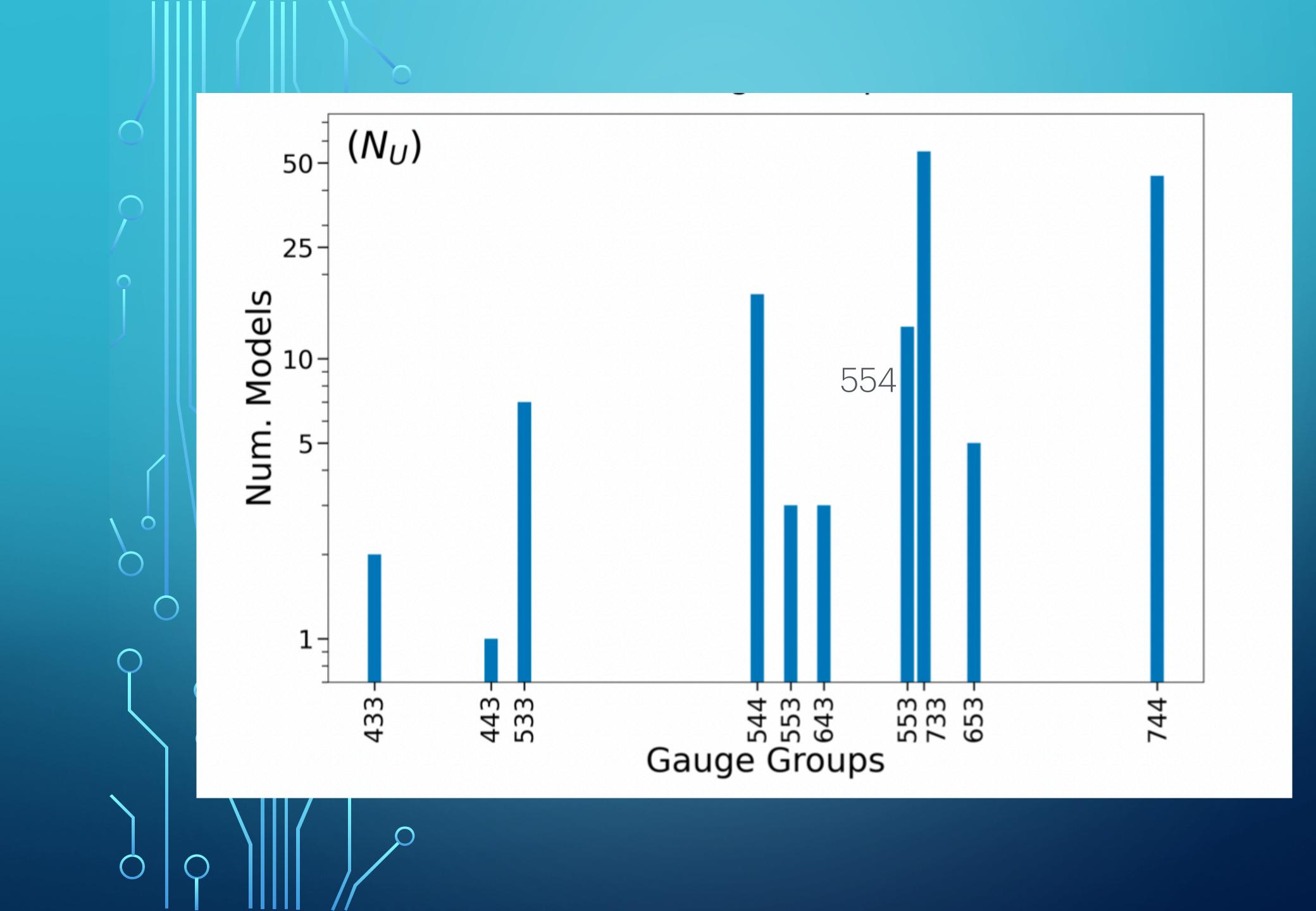
$E_6 \to SO(10) \to SU(5)$

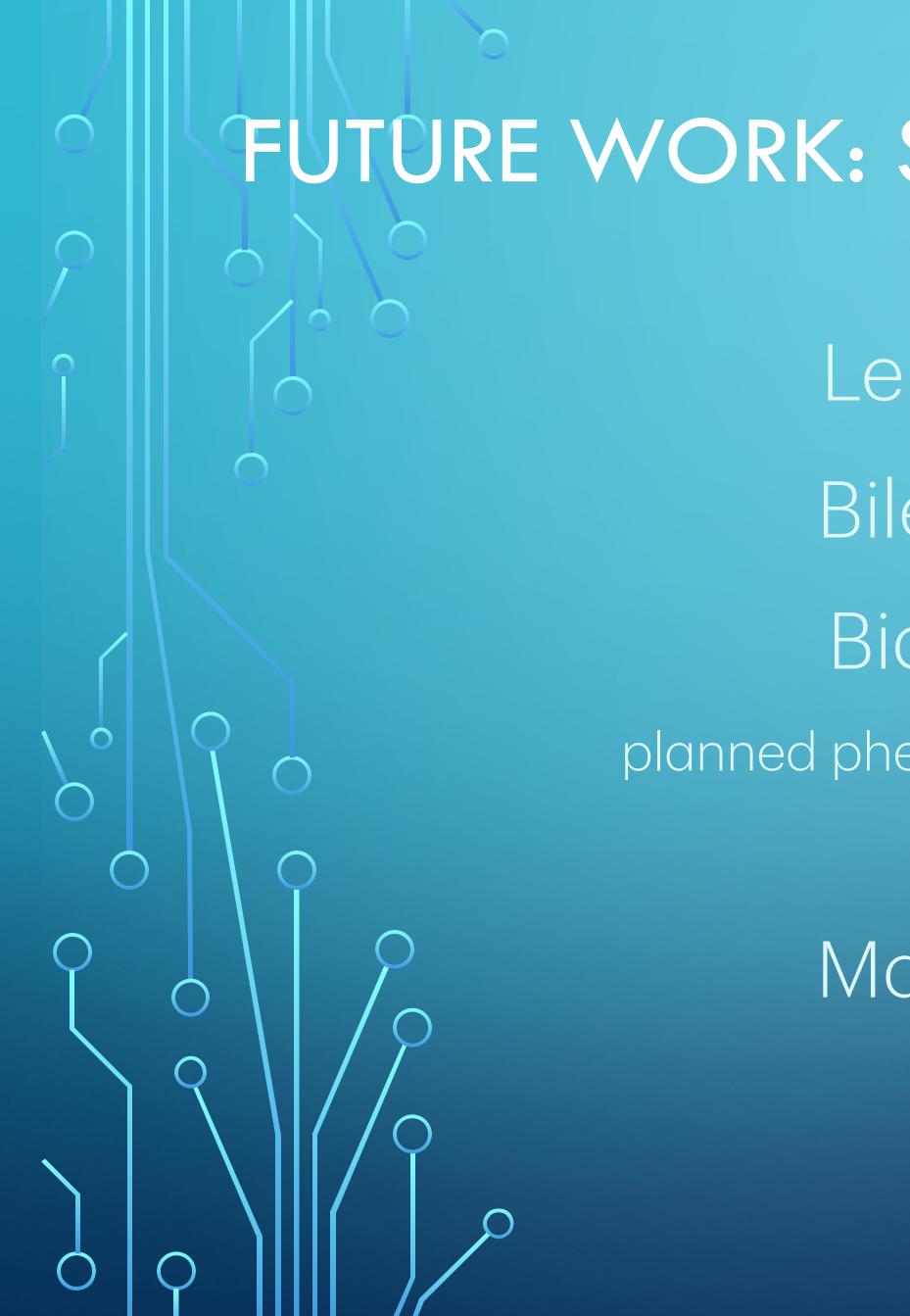
$27 \rightarrow 16 + 10 + 1 \rightarrow (\bar{5} + 10 + 1) + (5 + \bar{5}) + 1$

78, 45, 24

Three Family GUTs


Georgi


Frampton, Nandi


 $84 + 9(\bar{9})$

Models with 78 or fewer gauge bosons

Gauge Group $(G \in \mathcal{G}')$	$\dim G$	$N_P(G)$	$\begin{array}{l} \text{NAB} \\ (E \in \mathcal{E}) \end{array}$	$N_{AB}(E)$	$N_{noMCF}(E)$	$N_{no\overline{SM}}$	$N_Y(E)$	$N_U(E)$	$N_{VL}(E)$
$SU(4) \times SU(3) \times SU(3)$	31	108	(4, 3, 3)	84	84	48	9	2	1
$SU(4) \times SU(4) \times SU(3)$	38	144	(3, 4, 4)	696	444	252	24	1	0
$SU(5) \times SU(3) \times SU(3)$	40	135	(5, 3, 3)	1086	1086	516	57	7	1
$SU(5) \times SU(4) \times SU(4)$	54	240	(5, 4, 4)	20880	9148	5124	440	17	0
$SU(5) \times SU(5) \times SU(3)$	56	225	(3, 5, 5)	16020	1280	1074	120	3	0
$SU(6) \times SU(4) \times SU(3)$	58	216	(4, 3, 6)	20520	2496	2304	67	2	0
			(4, 6, 3)	4572	252	252	48	1	1
$SU(5) \times SU(5) \times SU(4)$	63	300	(4, 5, 5)	48400	4910	4360	353	13	0
$SU(7) \times SU(3) \times SU(3)$	64	189	(7, 3, 3)	9870	9870	4920	537	55	5
$SU(6) \times SU(5) \times SU(3)$	67	270	(5, 3, 6)	74370	5024	3264	93	4	0
			(5, 6, 3)	14352	468	336	60	1	1
$SU(7) \times SU(4) \times SU(4)$	78	336	(7, 4, 4)	78696	35222	13940	1008	45	0

FUTURE WORK: SU(A) × SU(B) × SU(C)

Leptoquarks

Bileptons

Biquarks

planned pheno with G. Corcella, R. Feger, P. Frampton, etc.

Magnetic Monopoles

with Q. Shafi.

\bigcirc \bigcirc \bigcirc

OTHER BIFUNDAMENTAL MODELS Quantification R Foot, H Lew and R Volkas (1990)

> Flipped Quantification J Dent, H Pas, TWK and T Weiler (2024)

Both based on SU(3) x SU(3) x SU(3) x SU(3) x SU(3)

Explore SU(a) x SU(b) x SU(c) x SU(d) models for models with up to 78 gauge generators

 \bigcirc

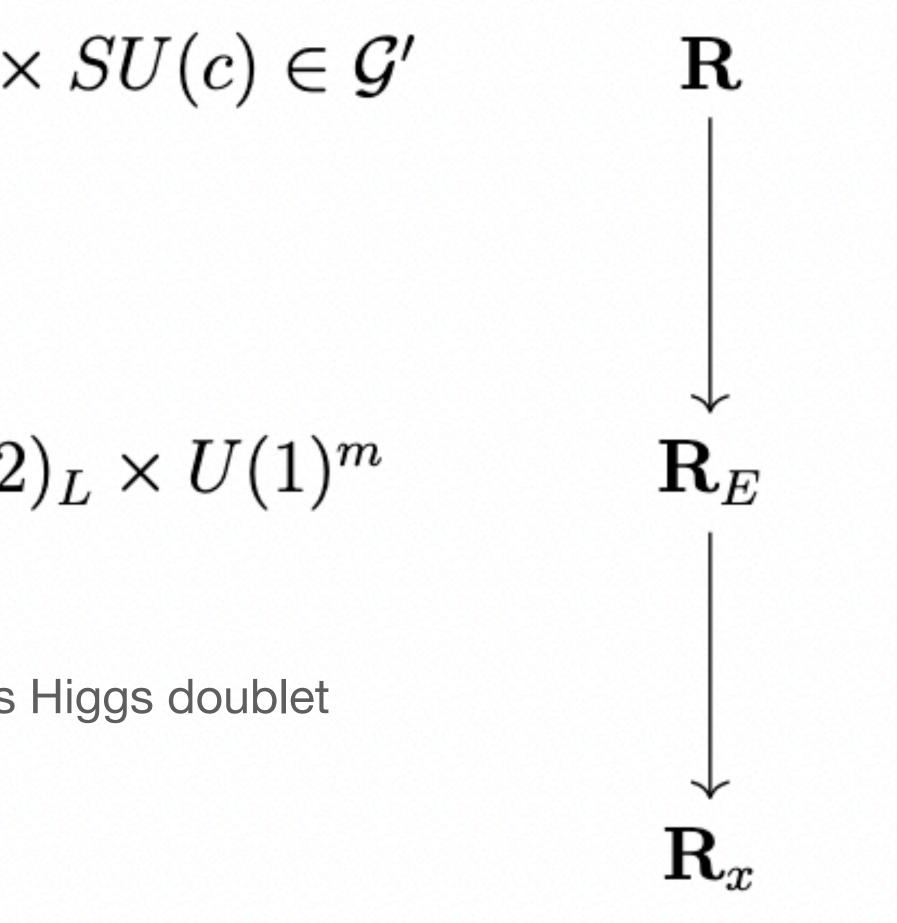
Extend to SUSY models with SU(a) × SU(b) × SU(c) and SU(a) × SU(b) × SU(c) × SU(d)

See E. Ma, et al.

Conclusions

Large landscape of unexplored models with small gauge group Possible diquarks, dileptons, leptoquarks, Z's, ...

- Can have new particles at or near the EW scale Some with fractional charge Hence multi-charged magnetic monopoles


$$G = SU(a) \times SU(b) \times$$

$$NAB (E \in \mathcal{E})$$

$$\tilde{G} = SU(3)_{C} \times SU(2)$$

$$AB (x \in \mathbb{R}^{m}) \downarrow \text{ plus}$$

$$G_{SM}$$

Search for 3 family models with $n \leq 78$

If a, b and c are relatively prime

 $c(a, \bar{b}, 1) + b(\bar{a}, 1, c) + a(1, b, \bar{c})$

If not remove greatest common divisor.

$SU(a) \times SU(b) \times SU(c)$ has $n = a^2 + b^2 + c^2 - 3$ gauge generators

Require no massless charged particle after Higgs SSB three family models fall into subclasses: "pristine models" only the three families are chiral at EW scale extra chiral fermions—leptonic, hadronic or both at EW scale.

 \frown Recall: \bigcirc \bigcirc plus a right-handed neutrino. \bigcirc

 \bigcirc

0

Ó

 \bigcirc

A family **F** of $SU(3)_C \times SU(2)_L \times U(1)_Y$ contains

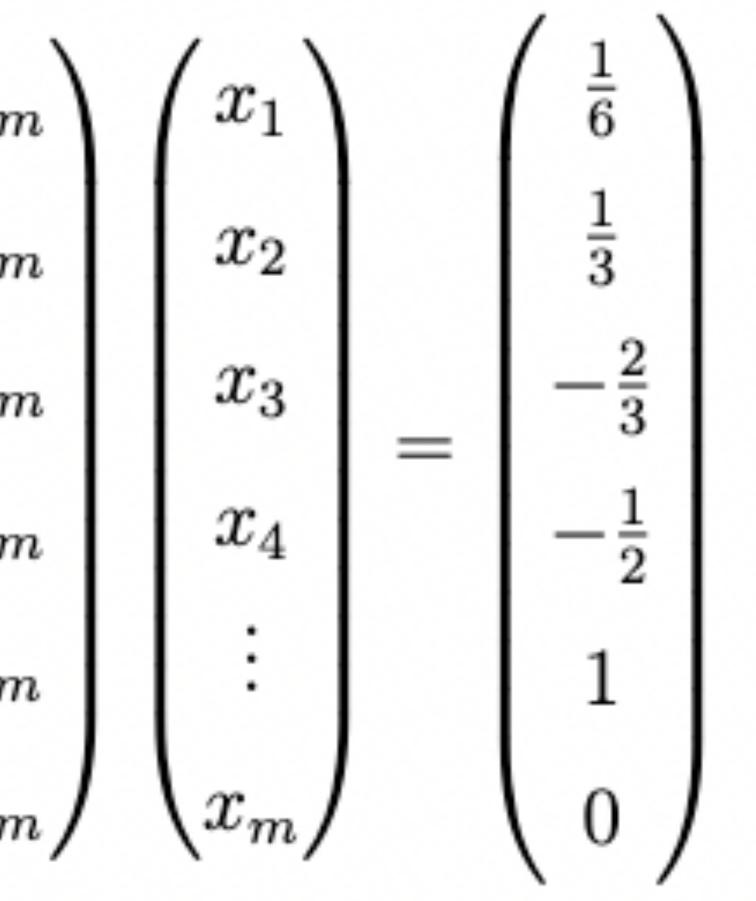
$\mathbf{F} = (\mathbf{3}, \mathbf{2})_{rac{1}{6}} + (ar{\mathbf{3}}, \mathbf{1})_{rac{1}{3}} + (ar{\mathbf{3}}, \mathbf{1})_{-rac{2}{3}} + (\mathbf{1}, \mathbf{2})_{-rac{1}{2}} + (\mathbf{1}, \mathbf{1})_{1}$

Spontaneous Symmetry Breaking \bigcirc Sequential nonAbelian breaking (maximal and regular) $SU(N) \rightarrow SU(N-1) \times U(1)$ \cap to get to $SU(3)_C \times SU(2)_L \times U(1)^m$ then break Abelian symmetry group to get $SU(3)_C \times SU(2)_L \times U(1)_Y$

Consider all possible embeddings of $SU(3)_C$ and $SU(2)_L$ and all possible $U(1)_{Y}$ charge assignments in \bigcirc $SU(a) \times SU(b) \times SU(c)$

Do Systematic Search

Select family members


 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

	,		
	$q_{\kappa 1}$	$q_{\kappa 2}$	 $q_{\kappa n}$
	$q_{\lambda 1}$	$q_{\lambda 2}$	 $q_{\lambda n}$
	$q_{\mu 1}$	$q_{\mu 2}$	 $q_{\mu n}$
	$q_{\nu 1}$		
	$q_{\xi 1}$	$q_{\xi 2}$	 $q_{\xi n}$
\bigcirc	$\langle q_{\rho 1}$	$q_{ ho 2}$	 $q_{ hon}$
	$\left(\right) \right)$		
$\left \begin{array}{c} \\ \\ \end{array} \right $			

Constrain models via SSB: only one unbroken U(1) allowed

Restrict to models to where all charges are fixed

 \bigcirc

We handle this ambiguity by picking out the solution *x* with the smallest norm: that is, the element of the solution space whose Euclidean distance from the origin is least.

All charges are rational fractions

All potential models No conjugate SM fields

- No massless charged fermions
- Possible Hypercharge assignments
- Three families, plus extra chiral fermions
- Three families, nothing extra

Vector-Like Extensions Pheno starts at high scale

N33 Classes (N relatively prime to 3)

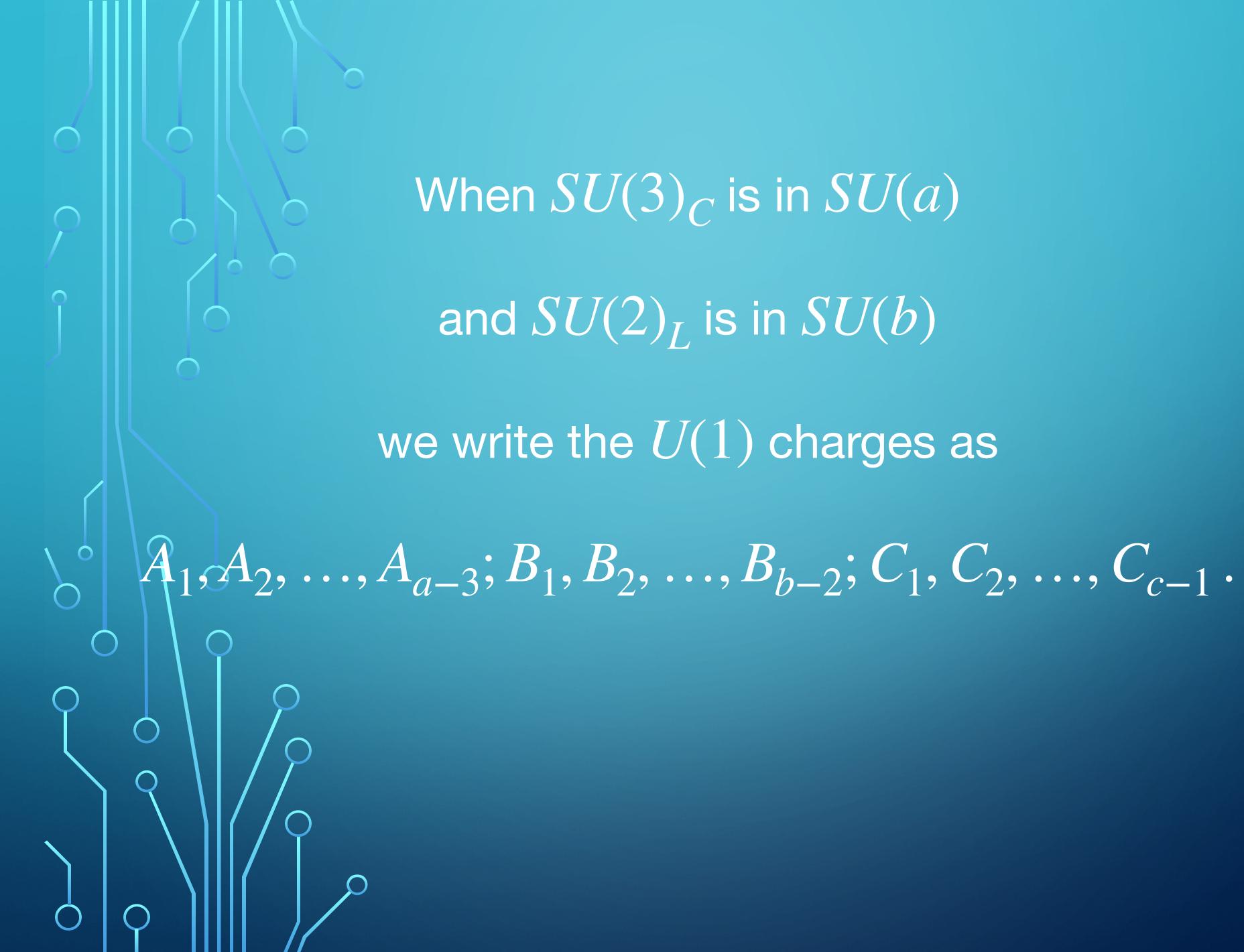
 \bigcirc

 \bigcirc

 \mathbf{R}^N where i = 1, 2, ... 5 $\mathbf{R}_{ ext{universal}}^{N33,i}$

$$\mathbf{R}^{33,i} = \mathbf{R}_{\mathrm{SM}} + \mathbf{R}^{N33,i}_{\mathrm{universal}} + \mathbf{R}^{N33,i}_{\mathrm{unique}}$$

$$\begin{aligned} &3(\mathbf{3},\mathbf{1})_{\frac{1}{6}} + 3(\overline{\mathbf{3}},\mathbf{1})_{-\frac{1}{6}} \\ &+ N(\mathbf{1},\mathbf{2})_{\pm\frac{1}{2}} + (4N-18)(\mathbf{1},\mathbf{2})_{0} \\ &+ (4N-15)(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} + (7N-36)(\mathbf{1},\mathbf{1})_{0} \end{aligned}$$

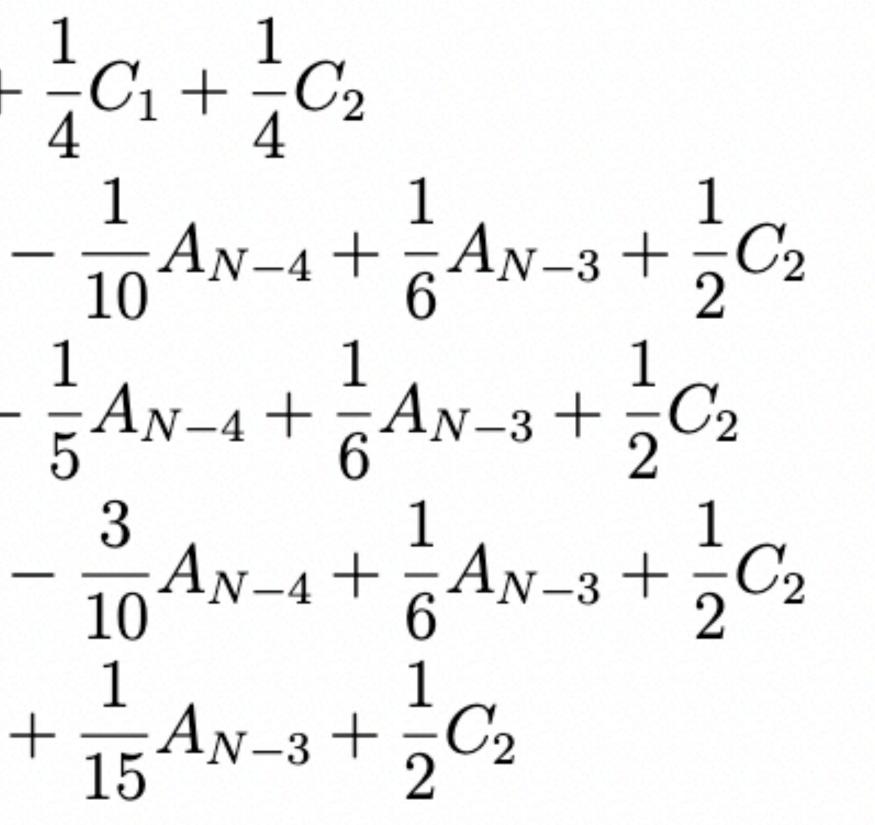

 \frown and where $\mathbf{R}_{\text{unique}}^{N33,i}$ takes one of the 5 following forms $\mathbf{R}_{\text{unique}}^{N33,1}(N) = 6(\mathbf{1},\mathbf{2})_0 + 6($ $\mathbf{R}_{\text{unique}}^{N33,2}(N) = 3(\mathbf{1},\mathbf{2})_{\pm\frac{1}{2}} +$ $\mathbf{R}_{\text{unique}}^{N33,3}(N) = 3(\mathbf{1},\mathbf{2})_{\pm 1} + 3$ $\mathbf{R}_{\text{unique}}^{N33,4}(N) = 3(\mathbf{1},\mathbf{2})_{\pm \frac{3}{2}} +$ $\mathbf{R}_{\text{unique}}^{N33,5}(N) = 3(\mathbf{1},\mathbf{2})_{\pm\frac{1}{10}} +$

 \sim

 \bigcirc

 \frown

$$\begin{aligned} &(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} + 12(\mathbf{1},\mathbf{1})_{0} \\ &3(\mathbf{1},\mathbf{1})_{\pm1} + 6(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} + 6(\mathbf{1},\mathbf{1})_{0} \\ &3(\mathbf{1},\mathbf{1})_{\pm\frac{3}{2}} + 6(\mathbf{1},\mathbf{1})_{\pm1} + 3(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} \\ &3(\mathbf{1},\mathbf{1})_{\pm2} + 6(\mathbf{1},\mathbf{1})_{\pm\frac{3}{2}} + 3(\mathbf{1},\mathbf{1})_{\pm1} + 3(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} \\ &+ 3(\mathbf{1},\mathbf{1})_{\pm\frac{3}{5}} + 3(\mathbf{1},\mathbf{1})_{\pm\frac{2}{5}} + 6(\mathbf{1},\mathbf{1})_{\pm\frac{1}{10}} \end{aligned}$$



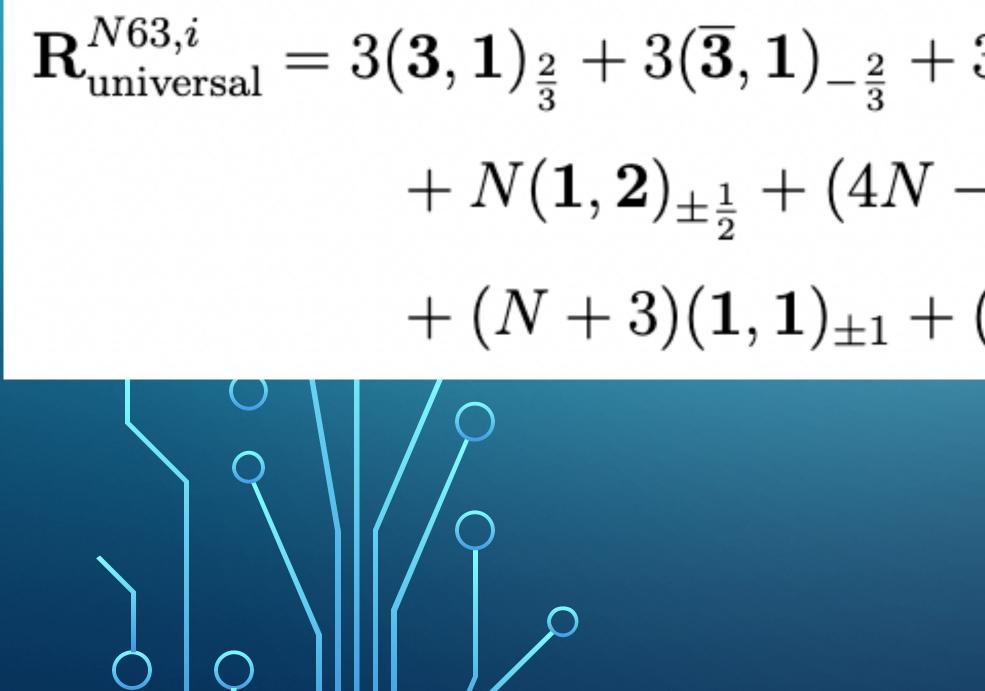
When $SU(3)_C$ is in SU(a)and $SU(2)_L$ is in SU(b)

we write the U(1) charges as

Hypercharge choice examples:

$$Y^{N33,1}(N) = \frac{1}{6}A_{N-3} + Y^{N33,2}(N) = \frac{1}{10}A_{N-5} + Y^{N33,3}(N) = \frac{1}{5}A_{N-5} - Y^{N33,4}(N) = \frac{3}{10}A_{N-5} + Y^{N33,5}(N) = \frac{1}{10}A_{N-5} + \frac{1}{10}A$$

N63 Classes (N relatively prime to 3 and 6)


$$\mathbf{R}^{N63,i} = \mathbf{R}_{SM}$$

where i = 1,2

6

 \bigcirc

0

 $+\,\mathbf{R}_{\text{universal}}^{N63,i}+\mathbf{R}_{\text{unique}}^{N63,i}$

$$\begin{aligned} &3(\mathbf{3},\mathbf{1})_{-\frac{1}{3}} + 3(\overline{\mathbf{3}},\mathbf{1})_{\frac{1}{3}} + 6(\mathbf{3},\mathbf{1})_{\frac{1}{6}} + 6(\overline{\mathbf{3}},\mathbf{1})_{-\frac{1}{6}} \\ &- 18)(\mathbf{1},\mathbf{2})_0 \\ &(12N - 48)(\mathbf{1},\mathbf{1})_{+\frac{1}{2}} + (16N - 42)(\mathbf{1},\mathbf{1})_0 \end{aligned}$$

and

 \frown

 \bigcirc

Q

 \bigcirc

 \bigcirc

 $\begin{aligned} \mathbf{R}_{\text{unique}}^{N63,1}(N) &= 6(\mathbf{1},\mathbf{2})_0 + 1\\ \mathbf{R}_{\text{unique}}^{N63,2}(N) &= 3(\mathbf{1},\mathbf{2})_{\pm \frac{1}{10}} + \end{aligned}$

Hypercharge choice examples:

 \frown

$$Y^{N63,1}(N) = \frac{1}{6}A_{N-3} + \frac{1}{6}B_4 - \frac{1}{6}B_3 + \frac{1}{2}C_2$$
$$Y^{N63,2}(N) = \frac{1}{10}A_{N-5} + \frac{1}{15}A_{N-3} + \frac{1}{6}B_4 - \frac{1}{6}B_3 + \frac{1}{2}C_2$$

$$\begin{split} & 18(\mathbf{1},\mathbf{1})_{\pm\frac{1}{2}} \\ &+ 9(\mathbf{1},\mathbf{1})_{\pm\frac{3}{5}} + 9(\mathbf{1},\mathbf{1})_{\pm\frac{2}{5}} + 12(\mathbf{1},\mathbf{1})_{\pm\frac{1}{10}} \end{split}$$

Chiral Extensions

New pheno near the EW scale

Minimal Chiral Extensions \bigcirc

 \frown

 \bigcirc

 \mathbf{O}

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \frown

 \bigcirc

Smallest example, 11 extra leptons:

 $\mathbf{R}_{C}^{11} = (\mathbf{1}, \mathbf{2})_{rac{3}{2}} +$

where

$$Y^{11} = \frac{1}{4}A_3 + \frac{5}{12}A_4 + \frac{1}{2}B_1 + C_2.$$

$3(F + 1) + R_{C}$

$$3(\mathbf{1},\mathbf{2})_{-\frac{1}{2}} + (\mathbf{1},\mathbf{1})_{-2} + 2(\mathbf{1},\mathbf{1})_{1}$$